
NGON modification proposal
Unstructured grid connectivity

Author: Pierre-Jacques Legay, ONERA
Contact: pierre-jacques.legay@onera.fr

Index table

1 Rationale for the modification proposal..1
1.1 Current SIDS description for unstructured grid connectivity...1
1.2 Limitations for NGON_N and MIXED..3
2 NGON modification proposal...4
2.1 Solution description..5
2.2 Solution analysis...6
3 Example of extension..9
4 Implementation note..10
5 Conclusions...10
6 Appendix: Document modification list...10

This CPEX focuses on the NGON representation. The rationale for requiring an extension to
CGNS/SIDS for unstructured grid connectivity is detailed in the first part of this document. The
second part details the proposal which includes a solution to the problem and an impact analysis of
that solution on the SIDS and on the performance.

1 Rationale for the modification proposal
The first section is a reminder of the current SIDS description for unstructured grid connectivity.
The following section details the problems induced by this description.

1.1 Current SIDS description for unstructured grid
connectivity

The unstructured grid connectivity is stored in the Elements_t of the CGNS/SIDS. As described
hereafter, its storage depends on the elements type:
For all element types except MIXED, NGON_n, and NFACE_n, ElementConnectivity
contains the list of nodes for each element. If the elements are sorted, then it must
first list the connectivity of the boundary elements, then that of the interior elements.
ElementConnectivity = Node11, Node21, ... NodeN1,
 Node12, Node22, ... NodeN2,
 ...
 Node1M, Node2M, ... NodeNM
where M is the total number of elements (i.e., ElementSize), and N is the number of
nodes per element.
ElementDataSize indicates the total size (number of integers) of the array
ElementConnectivity. For all element types except MIXED, NGON_n, and NFACE_n, the
ElementDataSize is given by:
ElementDataSize = ElementSize * NPE[ElementType]
where NPE[ElementType] is a function returning the number of nodes for the given
ElementType. For example, NPE[HEXA_8]=8.

1

2

3
4

5

6
7
8
9

10

11
12

13

14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

When the section ElementType is MIXED, the data array ElementConnectivity contains
one extra integer per element, to hold each individual element type:
ElementConnectivity = Etype1, Node11, Node21, ... NodeN1,
 Etype2, Node12, Node22, ... NodeN2,
 ...
 EtypeM, Node1M, Node2M, ... NodeNM
where again M is the total number of elements, and Ni is the number of nodes in
element i. In the case of MIXED element section, ElementDataSize is given by:
ElementDataSize =sum(n=[start, end], NPE[ElementTypen] + 1)

Arbitrary polyhedral elements may be defined using the NGON_n and NFACE_n
element types. The NGON_n element type is used to specify all the faces in the grid,
and the NFACE_n element type is then used to define the polyhedral elements as a
collection of these faces.

I.e., for NGON_n, the data array ElementConnectivity contains a list of nodes making
up each face in the grid, with the first value for each face defining the number of
nodes making up that face:
ElementConnectivity = Nnodes1, Node11, Node21, ... NodeN1,
 Nnodes2, Node12, Node22, ... NodeN2,
 ...
 NnodesM, Node1M, Node2M, ... NodeNM
where here M is the total number of faces, and Ni is the number of nodes in face i. The
ElementDataSize is the total number of nodes defining all the faces, plus one value
per face specifying the number of nodes making up that face.

Then for NFACE_n, ElementConnectivity contains the list of face elements making up
each polyhedral element, with the first value for each polyhedra defining the number
of faces making up that polyhedral element.
ElementConnectivity = Nfaces1, Face11, Face21, ... FaceN1,
 Nfaces2, Face12, Face22, ... FaceN2,
 ...
 NfacesM, Face1M, Face2M, ... FaceNM
where now M is the total number of polyhedral elements, and Ni is the number of faces
in element i. The sign of the face number determines its orientation. If the face
number is positive, the face normal is directed outward; if it’s negative, the face
normal is directed inward.
ElementDataSize =sum(n=[start, end],FPP[ElementTypen] + 1)
where FPP[ElementTypen] is a function returning the number of faces per polyhedra.

32
33
34
35
36
37
38
39
40

41
42
43
44

45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61
62
63
64
65
66
67

The following figure is set up to ease comprehension and comparison in the following sections:

This figure shows an unstructured element using the NGON representation. It describes the physical
construction of the CGNS related arrays GridCoordinates, ElementConnectivity, and
ParentElements.
Notation:

• Ng: represents a vertex from the current face.
• Nf: represents a face of the current element.

1.2 Limitations for NGON_N and MIXED

The ElementConnectivity array can be very large for industrial CFD case. As a direct consequence
we should be able to load this array fully or partially on multiple threads.

In the above description of the CGNS/NGON face based representation, the ElementConnectivity
array mixes two data types which are interdependent :

• the number of nodes for each face : Nnodes1
• a list of nodes for a face : Node11, Node21, ... NodeN1

This implies that we cannot efficiently split this array to be read in parallel.

Illustration 1: CGNS/NGON current face based representation.

68

69
70
71
72
73
74

75

76
77

78
79
80
81

82

In parallel, the interlaced data requires that the entire ElementConnectivity array be read on every
processor. This has a significant impact on IO performance.

NB: As described in the SIDS, the representation of MIXED and NFACE elements is identical to
the NGON representation. As such, the parallel read suffers from the same performance issues. The
issues of the MIXED and NFACE elements shall be addressed in a later CPEX.

2 NGON modification proposal
This proposal modifies the NGON SIDS representation to provide efficient parallel IO access and to
optimize the data representation.

2.1 Solution description

Illustration 2: ElementConnectivity interlaced data.

Illustration 3: NGON with new ElementConnectivity array and ElementStartOffset position array.

83
84

85
86
87

88

89
90

91

In this representation the ElementConnectivity array is deinterlaced. Illustration 4 compares the
current standard versus the new deinterlaced ElementConnectivity array:

The face vertex count has been removed from the connectivity. As a direct consequence the new
array contains a unique data type.

Indices needed to read or analyze the ElementConnectivity array are stored in the new
ElementStartOffset array.

This array lists the position in the ElementConnectivity of the first vertex for each face and it's last
value is the ElementConnectivity array size. This CGNS node is of type DataArray_t which allows
SIDS implementations to use int64 integers. For example, the Mid Level Library implementation
should use the cgsize_t type. The elementStartOffset read can be distributed between P processors.
Its size is Nf+1 with Nf being the number of face in the ElementConnectivity array. The
ElementStartOffset array makes it easy for a process or thread to read a portion of the
ElementConnectivity array.

NB: The last value of the ElementStartOffset allows easy access to the last vertex of the last face of
the ElementConnectivity array.

2.2 Solution analysis

2.2.1 CGNS standard modification

It strongly modifies the representation of the ElementConnectivity node and it inserts the
new array ElementStartOffset. These modifications should be reflected in the current CFD
database and CGNS related code to insure the continuity of the computational capability.
See section 4 'Implementation note'.

Illustration 4: Current ElementConnectivity vs. new ElementConnectivity.

Illustration 5: ElementStartOffset lists the face position in the ElementConnectivity and it's
last value indicates the ElementConnectivity total size.

92
93

94
95

96
97

98
99

100
101
102
103
104

105
106

107

108

109
110
111
112

2.2.2 Data consistency

The data type of both arrays ElementConnectivity and ElementStartOffset are consistent.

2.2.3 Optimal data size

This solution does not duplicate data thus the global data size is unchanged and stays
optimal.

2.2.4 ElementStartOffset -- an incremental index

In this proposal we choose to use the face position in the element connectivity instead of the
face number of nodes (ElementStartOffset=[0,4,7,11, ...] instead of [4, 3, 4, ...]).
The rationales are all IO read/write oriented and detailed here after:

1. Processor inter-dependency
To access the ElementConnectivity data we need to know the position of the face in the
ElementConnectivity array.
→ “Face vertex number” solution
In this configuration we would need to sum over the index array to obtain the face position
in the ElementConnectivity array. This means either create a new table or perform the
computation as many times as needed.
Another problem is that we need the result of the sum of face vertex of processor P0 to
obtain the location of the first vertex of the first face assigned to processor P1.
This behavior generalizes with the need to sum the face vertex of processors P0,P1,...,PM-1 to
obtain the location of the first vertex of the first face assigned to processor PM.
This is not a complex operation but we do not like the idea of imposing a dependency
on all previous processors computations.
→”Face position” solution
In this configuration the ElementStartOffset array can be split on P processors and each
processor related part directly gives the location of the face vertex from the
ElementConnectivity array.

2. Full vs. partial load
As stated above we need to know the position of the face in the ElementConnectivity array.
→ “Face vertex number” solution
If we want to access data in processor PM, then we need to access data on all processors
P0,P1,..., PM-1. This means that we need to load the index array on every processor of inferior
rank.
→ “Face position” solution
To access the ElementConnectivity we need the boundary of locations for processor PM.
These boundaries can be partially loaded from the ElementStartOffset array by getting the
first element of processor PM part and the first element of processor PM+1 part. These two
integers indicate the section of ElementConnectivity to be loaded on proc PM (1st element of
PM till 1st element of PM+1-1).
NB: The last value of the ElementStartOffset allows to apply the same operator to the last
section of the ElementConnectivity array. For the last section, the load is performed from PM

to PM+1-1 with PM+1 being the ElementConnectivity size.

With this proposal, we need to load only two integers from the ElementStartOffset
array on a processor to fully access the ElementConnectivity array. Partial load for
CGNS/HDF5 is available in CHLone for example. CHLone (http://chlone.sourceforge.net)

113

114

115

116
117

118

119
120
121

122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

154
155
156

http://chlone.sourceforge.net/

is a python module implementing the SIDS-to-Python mapping which allows a simple
load/save of CGNS/HDF5 files.

3. direct access to a face connectivity
For some specific unstructured software, it is interesting to have a simple access to a specific
face in the ElementConnectivity array.
This is only allowed with the “Face Position” solution.

4. Access to face position and face number of nodes
Using the incremental index method, it is easy to calculate the “face number of nodes” for
element ‘i’ as ElementStartOffset[i+1]-ElementStartOffset[i] is an O(1) calculation. So the
selected method gives both data (face position and face number of nodes) in O(1) where the
alternate method would give face number of nodes in O(1), but face position in O(N).

2.2.5 ElementStartOffset content

Using an incremental index --the face position in the ElementConnectivity array-- could lead
to large numbers in the ElementStartOffset array. However, these numbers are limited to the
size of the ElementConnectivity array as they give access to addresses of that array.
Moreover, the cgns type used to store the ElementStartOffset node is DataArray_t which
allows SIDS implementations to use I8 or cgsize_t types.

2.2.6 ElementStartOffset last value

The ElementStartOffset lists the first vertex position of each face in the
ElementConnectivity. Then we added the ElementConnectivity size as last value. The
rationale behind this is to improve data access when looping over the faces.
→ Positions without ElementConnectivity size
In this configuration an iteration loop over NGONs could be written as follows:

for (i=0; i < NGON; i++) {
 end = (I == NGON-1) ? ElementConnectivitySize
:ElementStartOffset[i+1];
 for (j=ElementStartOffset[i]; j < end; j++) {
 entry = ElementConnectivity[j];
 // do something here
 }
}

For each NGON we have to check if we are reaching the last NGON to handle the access to
the last vertex of the last face.
→ Positions with ElementConnectivity size (current proposal)
In this configuration an iteration loop over NGONs could be written as follow:

for (i=0; i < NGON; i++) {
 for (j=ElementStartOffset[i]; j < ElementStartOffset[i+1]; j++) {
 entry = ElementConnectivity[j];
 // do something here
 }
}

The last value of the ElementStartOffset gives a boundary to access the last vertex of the last
NGON without the conditional assignment.

157
158

159
160
161
162

163
164
165
166
167

168

169
170
171
172
173

174

175
176
177
178
179

180
181
182
183
184
185
186
187

188
189
190
191

192
193
194
195
196
197

198
199

3 Example of extension

Illustration 7: Previous vs. new ElementConnectivity array

Illustration 6: Simple configuration demonstrating the NGON proposal.

Illustration 8: ElementStartOffset array

200

4 Implementation note
This section aims to reflect discussions during previous CGNS meetings related to the
implementation impact of this modification proposal. As detailed above, this proposal strongly
modifies the representation of the ElementConnectivity node. As a consequence we need to address
the backward compatibility issue.

The following solutions were discussed in order to insure backward compatibility:
• CGNSLibraryVersion

In software, the CGNSLibraryVersion could be used to determine whether the CGNS file
uses the current or proposed NGON representation. This number attached to the standard
version will allow parsing tools to use the correct NGON representation.

• Conversion utility
A dedicated tool could be written to convert current CGNS files to the new NGON
representation

•
These two solutions should allow a smooth transition for all users of the CGNS standard.

5 Conclusions
This proposal for the NGON representation addresses the HPC issue due to the interlaced data
representation of the unstructured connectivity description. The solution optimizes the data
representation for parallel IO and has a low impact on the SIDS to deinterlace data.

As shown in the first part, MIXED and NFACES elements are equally concerned by the parallel IO
access. As such their SIDS representation should be updated accordingly to the solution chosen for
NGON. This issue should be addressed in a later CPEX.

6 Appendix: Document modification list
1. Following Marc Poinot remarks:

• Rename array from FaceConnectivityPosition to ElementStartIndex (text and figures)
• Reformulate a sentence describing the ElementStartOffset at line 101
• Remove remark concerning array size limitation in section 2.1.2.5

2. Following Robert Bush suggestion:
• Added section “Implementation note” to reflect CGNS committee discussions.

3. Remove multiple typo.
4. Following Gregory Sjaardema feed back:

• Modify the ElementStartOffset definition to improve the ability to loop on the data array.
The new size is N+1 and last index represent the ElementConnectivity total size.
This modification is propagated through sections 2 and 3.

• Correct multiple grammar, typographical or formatting issues.
5. Following Richard Hann feed back:

• Rename array from ElementStartIndex to ElementStartOffset (text and figures)
• Specify ElementStartOffset data type as cgtype_t.

201

202
203
204
205

206
207
208
209
210
211
212
213

214

215

216
217
218

219
220
221

222

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

	1 Rationale for the modification proposal
	1.1 Current SIDS description for unstructured grid connectivity
	1.2 Limitations for NGON_N and MIXED

	2 NGON modification proposal
	2.1 Solution description
	2.2 Solution analysis
	2.2.1 CGNS standard modification
	2.2.2 Data consistency
	2.2.3 Optimal data size
	2.2.4 ElementStartOffset -- an incremental index
	2.2.5 ElementStartOffset content
	2.2.6 ElementStartOffset last value

	3 Example of extension
	4 Implementation note
	5 Conclusions
	6 Appendix: Document modification list

