

CFD General Notation System

http://www.cgns.org

Bruce Wedan

ANSYS/ICEM CFD

Presentation Overview

- What is CGNS ?
- History of CGNS
- CGNS Steering Committee
- ISO-STEP Standard
- HDF5 Interface
- User Base
- CGNS Main Features
- Current Release (Version 2.3)
- Extensions (Version 2.4 beta)
- CGNS Tools
- Detailed Node Descriptions
- Example
- Conclusions

What is CGNS ?

- CFD General Notation System
 - Principal target is the data normally associated with compressible viscous flow (i.e. Navier-Stokes)
 - Applicable to computational field physics in general with augmentation of the data definitions and storage conventions
- Objectives
 - Provide a general, portable and extensible standard for the storing and retrieval of CFD analysis data
 - Offer seamless communication of CFD analysis data between sites, applications and system architectures
 - Eliminate the overhead costs due to file translation and multiplicity of data sets in various formats
 - Provide free, open software GNU Lesser General Public License

What is CGNS ?

- Advanced Data Format (ADF)
 - Software that performs the I/O operations
 - Directed graph based on a single data structure (the ADF node)
 - Defines how data is organized in the storage media.
- Standard Interface Data Structures (SIDS)
 - Collection of conventions and definitions that defines the intellectual content of CFD-related data.
 - Independent of the physical file format
- SIDS to ADF Mapping
 - Defines how the SIDS is represented in ADF
- CGNS Mid-Level Library (MLL)
 - High level Application Programming Interface (API) which conforms closely to the SIDS
 - Built on top of ADF and does not perform any direct I/O operation

History of CGNS

- 1994-1995:
 - Series of meetings between Boeing and NASA addressing means of improving technology transfer from NASA to Industry: The main impediment to technology transfer is the disparity of file formats.
- 1995-1998:
 - Development of the CGNS System (SIDS, ADF) at Boeing Seattle, under NASA Contract with participation from:
 - Boeing Commercial Aircraft Group, Seattle
 - NASA Ames/Langley/Lewis Research Centers
 - Boeing St-Louis (former McDonnell Douglas Corporation)
 - Arnold Engineering Development Center, for the NPARC Alliance
 - Wright-Patterson Air Force Base
 - ICEM CFD Engineering Corporation

History of CGNS

- 1997-1998:
 - Development of the CGNS Mid-level Library.
 - Institution of the CGNS website (http://www.cgns.org)
 - first release of the CGNS software and documentation.
- 1999-2001:
 - CGNS Steering Committee created as a subcommittee of the AIAA CFD Committee on Standards
 - Version 2.0 of CGNS library released
 - Added moving grids and time-dependent data
 - ISO-STEP standardization process undertaken by Boeing
 - CGNStalk mailing list created at NASA Glenn

History of CGNS

- 2002:
 - CGNS becomes a AIAA Recommended Practice
 - Version 2.1 of CGNS library released
 - Added support for user-defined arrays, chemistry and links
- 2003:
 - Source code moved under CVS at SourceForge (http://sourceforge.net/projects/cgns/)
 - Version 2.2 of CGNS library released
 - Added axisymmetry, rotating coordinates, connectivity and boundary condition properties
- 2004:
 - HDF5 interface to CGNS released
 - Version 2.3 (current stable version) released
 - I/O times speed up by an order of magnitude

CGNS Steering Committee

- Public forum made up of international representatives from government, industry and academia
- Responsibilities
 - Maintain the software, documentation and CGNS web site
 - Ensure a free distribution of the software and documentation
 - Promote the acceptance of the CGNS standard
- Organization
 - Meets at a minimum of once a year
 - Represented by an elected ChairPerson
 - currently Chris Rumsey of NASA Langley
 - Governs by consensus
 - Welcomes participation of all parties, members or not

CGNS Steering Committee

- Membership 20 organizations
 - NASA Ames
 - NASA Langley
 - NASA Glenn
 - Boeing Commercial
 - Boeing Rocketdyne
 - Boeing Integrated Defense Systems
 - Pratt & Whitney
 - ICEM CFD Engineering
 - Fluent, Inc.
 - Rolls-Royce Allison

- US Air Force / AEDC
- CD ADAPCO
- Intelligent Light
- Pointwise
- Aerospatiale Matra Airbus
- NUMECA
- ONERA
- Stanford University
- Utah State University
- ANSYS CFX

ISO-STEP Standard

- AP 237 Fluid Dynamics
 - Top-level standard which defines the data types and structures used throughout the field of fluid dynamics
 - Need to extend ISO-STEP for binary data (currently ASCII only)
- Part 110 Computational Fluid Dynamics
 - Defines the data types and structures unique to CFD
- Part 52 Mesh-based Topology
 - Defines structured and unstructured grids including topology and element connectivity
- Part 53 Numerical Analysis
 - Defines links to product data management structures and configuration control for numerical analysis

ISO-STEP Standard

- Approval process
 - A proposal must past 6 stages or "gates" to become a standard.
 - Passage through each "gate" requires a specified number of votes from the 17 P-Member countries. There are CGNS users in each of these countries.
 - Proposals are cancelled after 2 years if progress is not shown
 - AP 237 is at "gate" 3 (Committee Draft)
 - Parts 110, 52, and 53 are at "gate" 4 (Draft International Std)
- Current status
 - Standardization effort is stalled due to lack of funds.
 - ISO-STEP has decided to merge AP 237 with AP 209 (finite element analysis) because there is a high degree of common content. Effort is being lead by Keith Hunten of Lockheed Martin

HDF5 Interface

- Implementation
 - Fully implemented at the ADF level no change to MLL
- Advantages
 - Used in many applications
 - Parallel I/O using MPI
 - Faster access through linked files
- Disadvantages
 - File sizes are 2 to 3 times larger
 - I/O times are generally 2 to 3 times slower, but may be up to a order of magnitude for a large number of nodes
- Current Status
 - HDF5 Task Force set up to further evaluate implementation
 - Added as option to CGNS with conversion routines

User Base

- Registered Users
 - 591 users from more than 25 countries
- CGNStalk (as of May 2003)
 - 153 participants from 20 different countries and at least 63 different organizations
- SourceForge (last 2 years)
 - Average of 20 page views and 7.5 downloads per day
- Known implementations
 - 13 commercial, 9 government, 5 industry, 3 academia

CGNS Main Features

- Hierarchical data structure: quickly traversed and sorted, no need to process irrelevant data
- Complete and explicit problem description
- Standardized naming conventions
- Unlimited internal documentation, and application specific data
- Layered so that much of the data structures are optional
- ADF database: universal and self describing
- Based on a single data structure called an ADF node
- The data may encompass several files through the use of links
- Portable ANSI C software, with complete Fortran and C interfaces
- Files stored in compact C binary format
- Complete and architecture independent API

- Grid coordinates and elements
 - 1D, 2D and 3D support (physical and cell dimensions)
 - Any number of structured and/or unstructured zones
 - Cartesian, cylindrical and spherical coordinates systems
 - Linear and higher-order elements (22 predefined element types)
 - 2D axisymmetry
- Grid connectivities
 - 1-to-1 abutting, mismatched abutting, and overset (chimera)
 - Connectivity properties (average and periodic interfaces)
- Boundary conditions
 - Simple or complex boundary conditions with predefined identifiers
 - Any number of Dirichlet or Neumann conditions may be specified globally or locally on a boundary condition patch
 - Boundary patch normals, area and wall function properties

- Governing flow equations
 - General class of flow equations
 - Gas, viscosity, thermal conductivity, thermal relaxation, chemistry, turbulence, and turbulence closure models
- Solutions
 - Vertex, cell, face or edge centered with rind (ghost points/cells)
 - Any number of solution variables
 - Predefined identifiers for solution variables
 - Generic discrete data (not typically part of the solution)
- Time-dependent flows
 - Time-accurate or non-time-accurate
 - Rotating, rigid motion or arbitrary motion grids
 - Storage of base and/or zone iterative data

- Physical data
 - Data class: dimensional, normalized, or non-dimensional
 - Data conversion factors
 - Dimensional units: mass, length, time, temperature and angle
 - Dimensional exponents: powers of base units
- Auxiliary data
 - Global and/or local convergence history
 - Reference state variables
 - Gravity and global integral data
 - Arbitrary user-defined data
 - Textual data for documentation and annotations

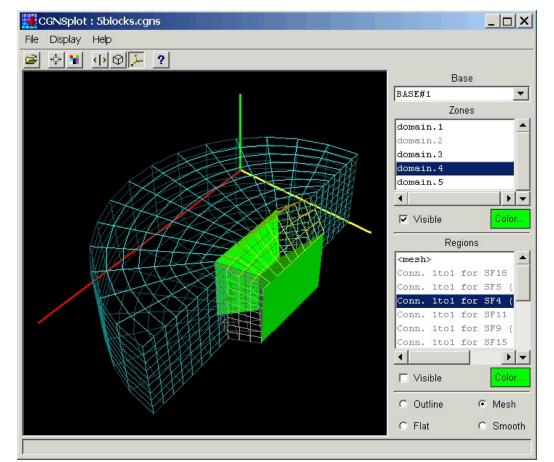
- Families
 - Provides a level of indirection to allow mesh to geometry associations
 - Boundary conditions may be applied on families
 - Links mesh surfaces to one or more CAD entities

Extensions (Version 2.4 beta)

- Units
 - Electric current, amount of a substance, and luminous intensity added to the base units
- Electromagnetics
 - Electric field, magnetic field and electrical conductivity models added to the governing flow equations
 - Voltage, electric and magnetic field strengths, current density, electrical conductivity, Lorenz force and Joule heating added to list of solution identifiers
- Families
 - Rotating coordinates and complex boundary conditions added to the family specification

Extensions (Version 2.4 beta)

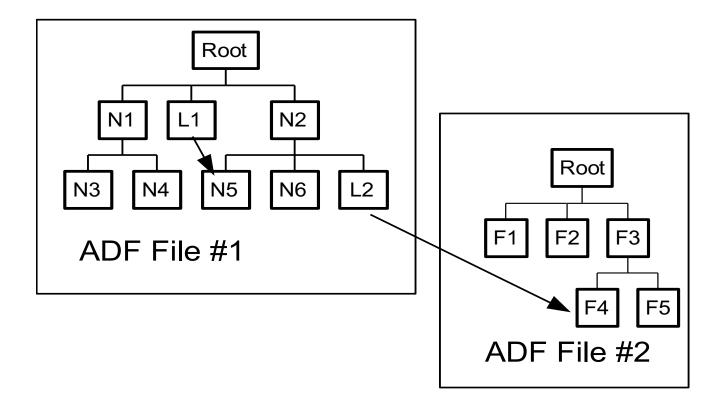
- Boundary conditions
 - Allow for specification of boundary condition data at a location different than that of the patch specification
- User-defined data
 - Allows recursive user-defined data
 - Family names and point set specification added
- 1-to-1 connectivities
 - Periodic and average interface properties added
- Partial read and write
 - Partial read and write for grid coordinates, elements and solution variable added


CGCNS of J deta standard

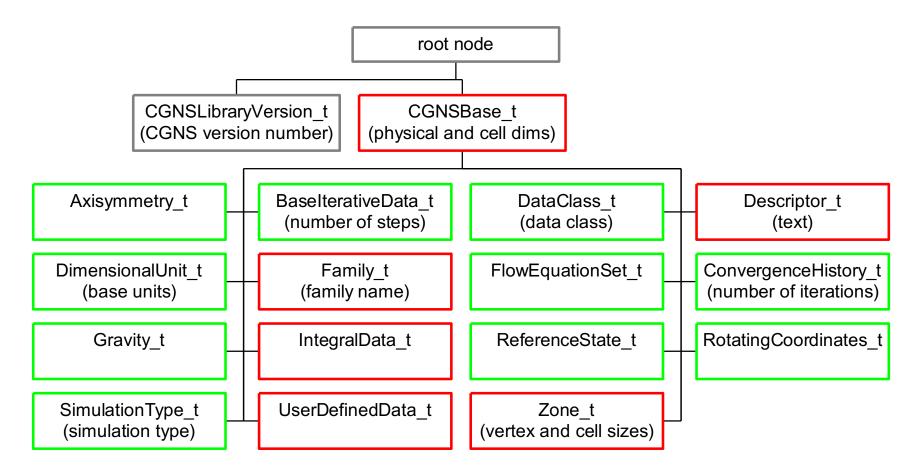
- ADFviewer
 - Views and/or edits ADF/CGNS files.
 - May create, delete or modify nodes
 - Nodes are displayed in a Windows-like collapsible tree
 - Additional utilities may be accessed from the menus
 - Configurable menus
 - Written in Tcl/Tk

ADI NEWEL A LULZIACHIS			
ile Config Tree Tools Help			
	<u> PB I 🗰</u>	*** *** ?	
Node Tree Node Description			
	Parent Node	/Base1/Zone1	
CGNSLibraryVersion	Node Name	Section1	_
È- 🛄 Base1 È- 🧰 Zone1	Node Label	Elements_t	*
□ Solution1 □ □ □ GridLocation	Link Descript	ion	
— 🖹 VelocityX	Link File	grid.cgns	Browse
— 🖹 VelocityY — 🖺 VelocityZ	Link Node	/Base1/Zone1/Section1	Browse
⊕- 🛄 Pressure — 🖺 TurbulentEnergγKii	Data Description		
- 🖹 TurbulentDissipatic	Data Type	14	*
। E- 🛄 Turbulent∀iscosity E- 🖺 Temperature	Dimensions	2	
– 🗈 Density	Bytes	8	
— 🗈 ViscosityMoleculai — 🗈 SpecificHeatPress	create	modify read clear	delete
└─ 🖺 ThermalConductivit	Node Data		
E DataClass	20 0		
⊕- 🛄 CoordinateX ⊕- 🔲 CoordinateY			
E- Coordinate Y			
— 🛱 ZoneType			
由 🗊 Section1			► ▼
	Line 1	(1) Values/Line 2	

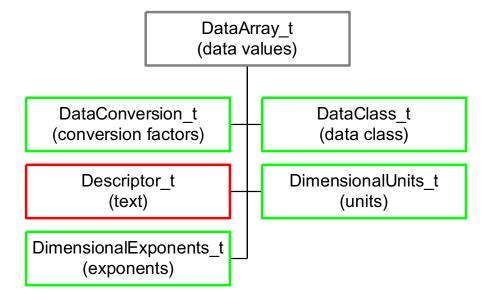
- CGNSplot
 - Viewer for CGNS files
 - Displays zones, element sets, connectivities, and boundary conditions
 - Written in Tcl/Tk with OpenGL
 - Runs standalone, or may be called from ADFviewer

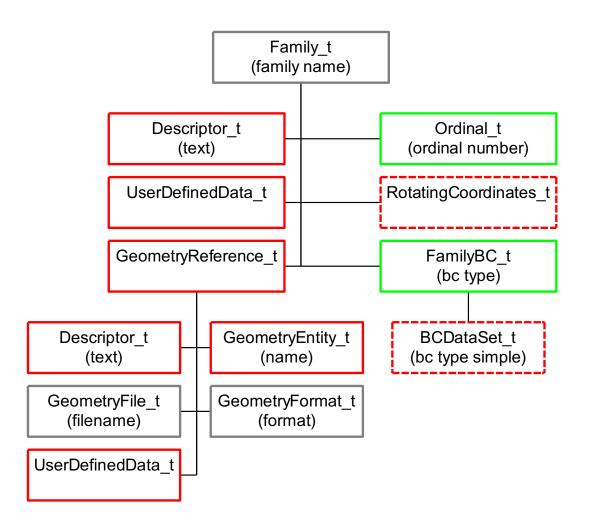

- File conversion
 - Convert Patran, PLOT3D and Tecplot files to CGNS
 - Convert CGNS files to PLOT3D and Tecplot
- CGNS file manipulation
 - Data conversion utilities for modifying the solution location (vertex or cell-center), solution variables (primitive or conservative), and data class (dimensional or normalized)
 - Subset extraction and interpolation
- CGNS bindings
 - Tcl/Tk interface to ADF and MLL
 - PyCGNS: Python interface to ADF and MLL
 - ADFM: in memory representation of ADF trees
 - CGNS++: C++ interface to ADF and MLL

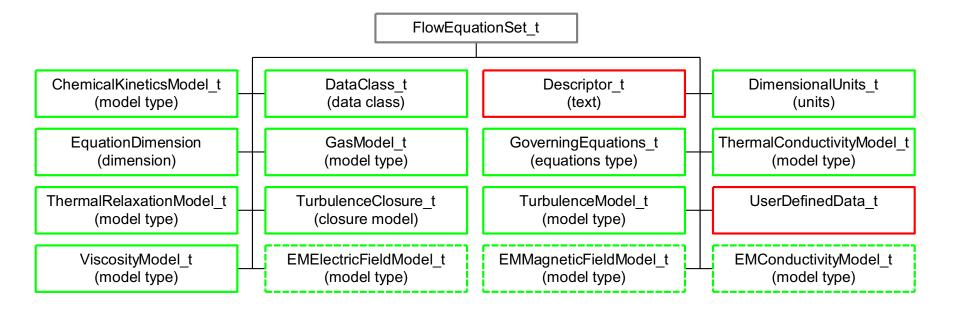
- Other utilities
 - *CGNScheck*: checks CGNS files for valid data and conformance to the SIDS
 - *ADFlist*: lists ADF/CGNS file tree structure and node data
 - *ADF_Edit*: command-line based interactive browser/editor for ADF/CGNS files
 - *CGNS_readhist*: reads a CGNS file and writes convergence history to a formatted file.
 - *FTU (File Transfer Utility)*: converts to and from PLOT3D, and has a text-based menu allowing the manipulation of a CGNS base
 - CGNS Viewer: ADF/CGNS file editor/viewer with a GUI using the GTK+ library

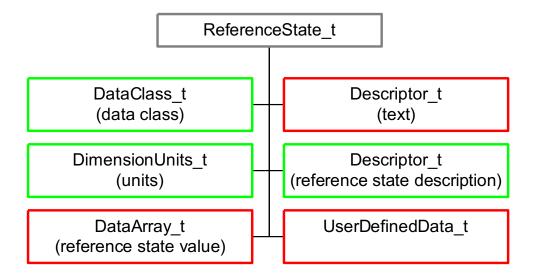

ADF Node Content

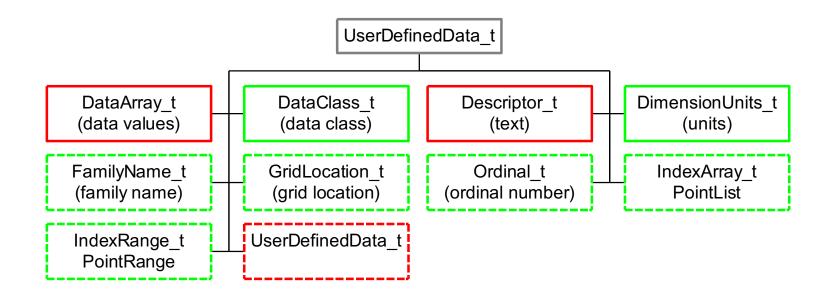
- ID: A unique identifier to access a node within a file.
- Name: A character field used to name the node. It must be unique for a given parent.
- Label: A character field used to described the type of information contained in the node.
- Data type: A character field specifying the type of data (e.g. real, complex) associated with the node.
- Number of dimensions: The dimensionality of the data.
- Dimensions: An integer vector containing the number of elements within each dimension.
- Data: The data associated with the node.
- Number of sub-nodes: The number of children directly attached to a node.
- Name of sub-nodes: The list of children names.

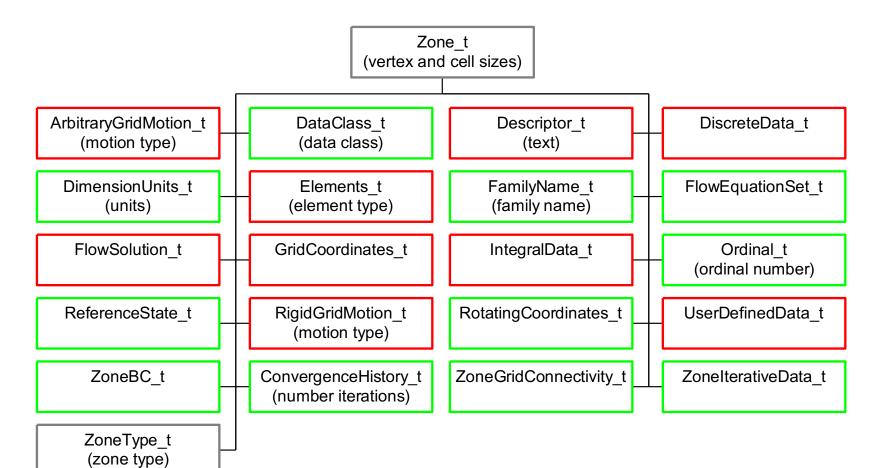

Top Level Structure

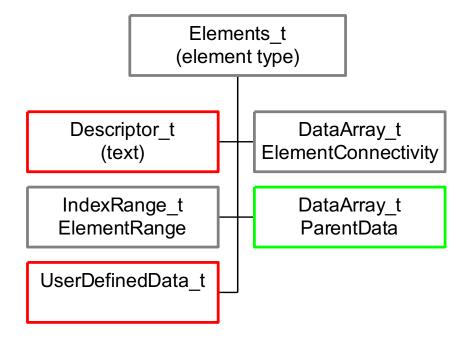

DataArray_t Node

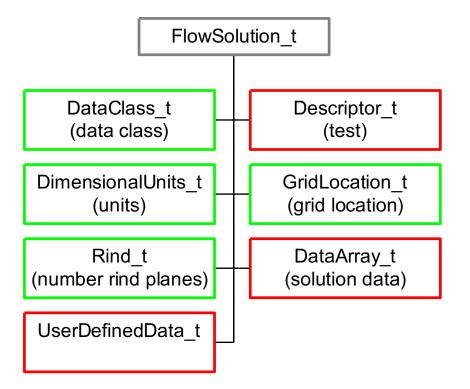

Family_t Node

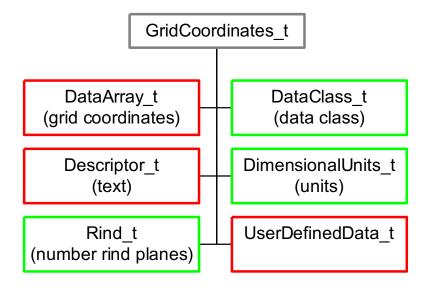

FlowEquationSet_t Node

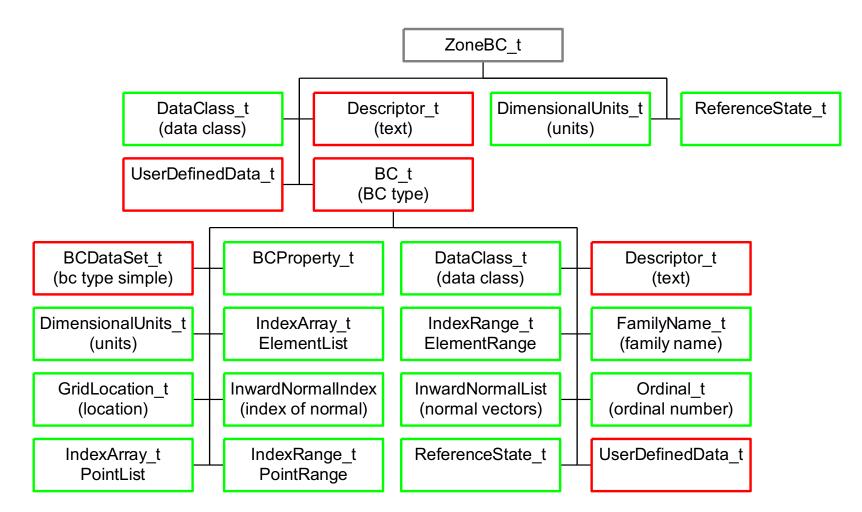

ReferenceState_t Node

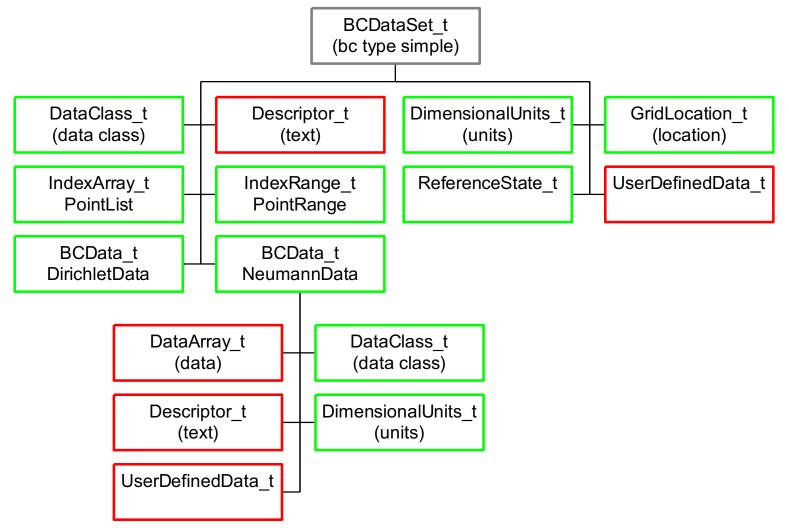

UserDefinedData_t Node

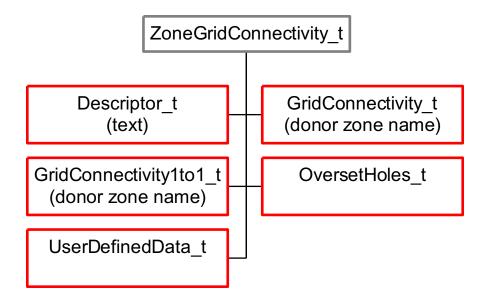



Elements_t Node

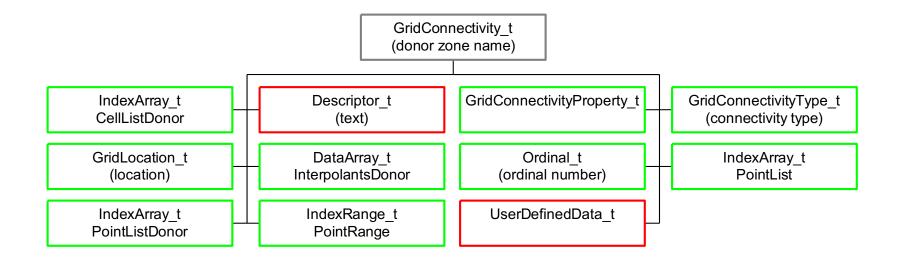

FlowSolution_t Node

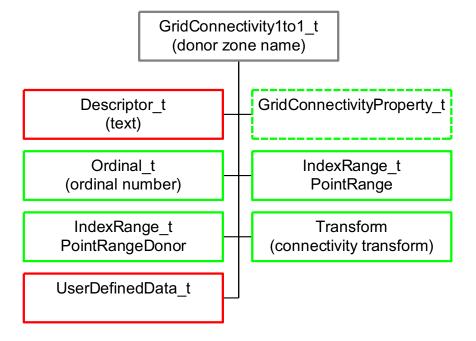

GridCoordinates_t Node

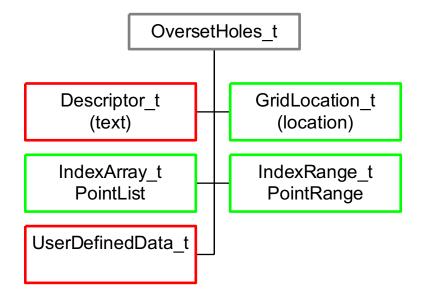




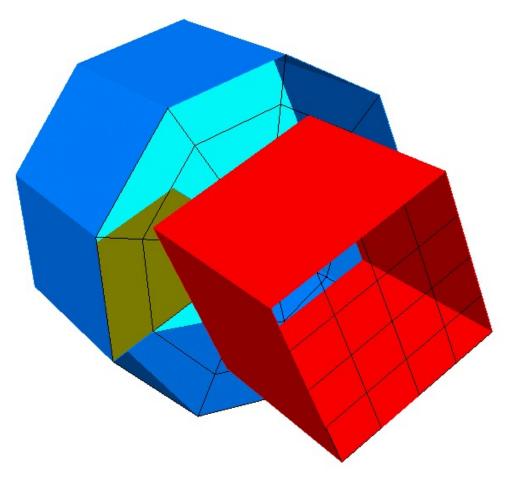
BCDataSet_t Node




GridConnectivity_t Node


GridConnectivity1to1_t Node

OversetHoles_t Node



Example

• Structured cylinder attached to unstructured cube

Example - Code

unlink("example.cgns"); cg open("example.cgns", MODE WRITE, &cgfile); cg base write(cgfile, "Mismatched", CellDim, PhyDim, &cqbase); cq goto(cqfile, cqbase, "end"); cg descriptor write("Descriptor", "Mismatched Grid"); cg dataclass write (Dimensional); cg units write (Kilogram, Meter, Second, Kelvin, Radian); /*---- zone 1 is unstructured cube ----*/ cg zone write(cgfile, cgbase, "UnstructuredZone", size, Unstructured, &cgzone); /* write coordinates */ cg coord write(cgfile, cgbase, cgzone, RealSingle, "CoordinateX", xcoord, &cgcoord); cg coord write(cgfile, cgbase, cgzone, RealSingle, "CoordinateY", ycoord, &cgcoord); cg coord write(cgfile, cgbase, cgzone, RealSingle, "CoordinateZ", zcoord, &cgcoord); /* write elements and faces */ cg section write(cgfile, cgbase, cgzone, "Elements", HEXA 8, 1, num element, 0, elements, &cgsect); cg section write(cgfile, cgbase, cgzone, "Faces", QUAD 4, num element+1, num element+num face, 0, faces, &cgsect); cg parent data write(cgfile, cgbase, cgzone, cgsect, parent); /* write inflow and wall BCs */ cg boco write(cgfile, cgbase, cgzone, "Inlet", BCInflow, ElementRange, 2, range, &cgbc); cg boco write(cgfile, cgbase, cgzone, "Walls", BCWall, PointList, n, pts, &cqbc);

```
/*---- zone 2 is structured cylinder -----*/
cg zone write(cgfile, cgbase, "StructuredZone", size,
     Structured, &cgzone);
/* write coordinates */
cg coord write(cgfile, cgbase, cgzone, RealSingle,
     "CoordinateR", xcoord, &cgcoord);
cg coord write(cgfile, cgbase, cgzone, RealSingle,
     "CoordinateTheta", ycoord, &cgcoord);
cg coord write(cgfile, cgbase, cgzone, RealSingle,
     "CoordinateZ", zcoord, &cgcoord);
/* write outlet and wall BCs */
cg boco write(cgfile, cgbase, cgzone, "Outlet",
     BCOutflow, PointRange, 2, range, &cgbc);
cg boco write(cqfile, cqbase, cqzone, "Walls", BCWall,
     PointList, n/3, pts, &cqbc);
/* periodic 1to1 connectivity */
cg 1to1 write(cgfile, cgbase, 2, "Periodic",
     "StructuredZone", range, d range, transform,
     &cgconn);
/*---- zone 1 -> zone 2 connectivity -----*/
cg conn write(cgfile, cgbase, 1, "Unstructured ->
     Structured", Vertex, Abutting, PointRange, 2, pts,
     "StructuredZone", Structured, CellListDonor,
     Integer, n/3, d pts, &cgconn);
cg goto(cgfile, cgbase, "Zone t", 1,
     "ZoneGridConnectivity t", 1,
     "GridConnectivity t", cgconn, "end");
cq array write("InterpolantsDonor", RealSingle, 2, dims,
     interp);
/*---- zone 2 -> zone 1 connectivity similar -----*/
/* close file */
cg close(cgfile);
```

Example - Node Tree

ADF MotherNode +-CGNSLibraryVersion +-Mismatched +-Descriptor +-DataClass +-DimensionalUnits +-UnstructuredZone | +-ZoneType | +-GridCoordinates | | +-CoordinateX | | +-CoordinateY | | +-CoordinateZ | +-Elements | | +-ElementRange | | +-ElementConnectivity | +-Faces | | +-ElementRange | | +-ElementConnectivity | | +-ParentData | +-ZoneBC | | +-Inlet | | | +-ElementRange | | +-Walls +-PointList | +-ZoneGridConnectivity +-Unstructured -> Structured +-GridConnectivityType +-PointRange +-CellListDonor +-InterpolantsDonor

- +-StructuredZone
 - +-ZoneType
 - +-GridCoordinates
 - | +-CoordinateR
 - | +-CoordinateTheta
 - | +-CoordinateZ
 - +-ZoneGridConnectivity
 - | +-Periodic
 - | | +-Transform
 - | | +-PointRange
 - | | +-PointRangeDonor
 - | +-Structured -> Unstructured
 - +-GridConnectivityType
 - +-PointList
 - +-CellListDonor
 - +-InterpolantsDonor
 - +-ZoneBC
 - +-Outlet
 - | +-PointRange
 - +-Walls
 - +-PointList

Conclusions

- Why should I use CGNS ?
 - CGNS is a well-established, stable format with world-wide acceptance, use and support
 - Provides seamless communication of data between applications, sites, and system architectures
 - Supported by most commercial visualization and CFD vendors
 - Extensible and flexible easily adapted to other fields of computational physics through specification in the SIDS
 - Backwards compatible with previous versions forwards compatible within the major release number
 - Allows new software development to focus on functionality and reliability rather than data I/O, storage and compatibility
- Want more information ?
 - http://www.cgns.org