
1

An Efficient and Flexible Parallel I/O
implementation for the CFD General Notation

System
Kyle Horne, Nate Benson

Center for High Performance Computing, Utah State University
Thomas Hauser

Academic & Research Computing, Northwestern University
horne.kyle@gmail.com, nate.benson@usu.edu, t-hauser@northwestern.edu

Abstract—One important, often overlooked, issue
for large, three dimensional time-dependent com-
putational fluid dynamics (CFD) simulations is the
input and output performance of the CFD solver,
especially for large time-dependent simulations. The
development of the CFD General Notation System
(CGNS) has brought a standardized and robust
data format to the CFD community, enabling the
exchange of information between the various stages
of numerical simulations. Application of this standard
data format to large parallel simulations is hindered
by the reliance of most applications on the CGNS
Mid-Level Library. This library has only supported
serialized I/O. By moving to HDF5 as the recom-
mended low level data storage format, the CGNS
standards committee has created the opportunity
to support parallel I/O. In our work, we present
the parallel implementation of the CGNS Mid-Level
Library and an I/O request-queuing approach to
overcome some limitations of HDF5. We also present
detailed benchmarks on a parallel file system for
typical structured and unstructured CFD application
I/O patterns.

I. INTRODUCTION

Linux clusters can provide a viable and
more cost-effective alternative to conventional
supercomputers for the purposes of computa-
tional fluid dynamics (CFD). In some cases,
the Linux supercluster is replacing the conven-
tional supercomputer as a large-scale, shared-
use machine. In other cases, smaller clusters are
providing dedicated platforms for CFD compu-

tations. One important, often overlooked, issue
for large, three-dimensional time-dependent
simulations is the input and output performance
of the CFD solver. The development of the
CFD General Notation System (CGNS) (see
[1], [2], [3]) has brought a standardized and
robust data format to the CFD community,
enabling the exchange of information between
the various stages of numerical simulations.
CGNS is used in many commercial and open
source tools such as Fluent, Fieldview, Plot3D,
OpenFOAM, Gmsh and VisIt. Unfortunately,
the original design and implementation of the
CGNS interface did not consider parallel ap-
plications and, therefore, lack parallel access
mechanisms. By moving to HDF5 as the rec-
ommended low level data storage format, the
CGNS standards committee has created the
opportunity to support parallel I/O. In our
work, we present the parallel implementation
of the CGNS Mid-Level Library and detailed
benchmarks on parallel file systems for typical
structured and unstructured CFD applications.

II. I/O FOR COMPUTATIONAL FLUID
DYNAMICS SIMULATIONS

Current unsteady CFD simulations demand
not only a great deal of processing power, but
also large amounts of data storage. Even a
relatively simple unsteady CFD simulation can

2

produce terabytes of information at a tremen-
dous rate, and all this data must be stored and
archived for analysis and post processing. Most
CFD programs have one of the following three
approaches implemented:

1) One process is responsible for I/O. This
means that all I/O activity is channeled
through one process and the program
cannot take advantage of a parallel file
system since this process is inherently
serial. One CFD code using this approach
is OVERFLOW [4]developed by NASA.

2) A large number of parallel CFD codes
are programmed to access their input
and output data in a one-file-per-process
model. This approach is simple but has
two major disadvantages. First, in order
to get access to the full solution for vi-
sualization or post-processing, one must
reassemble all files into one solution file.
This is an inherently serial process and
can take a long time. Second, the sim-
ulation program may only be restarted
with the same number of processes (see
Fig. 1a) which may reduce the potential
throughput for a user on a busy super-
computer. One CFD code which takes
this approach is OpenFOAM[5].

3) The most transparent approach for a user
is writing from all process in parallel
into one shared file. The current MPI-
2 standard [6]defines in chapter nine the
MPI-I/O extension to allow parallel ac-
cess from memory to files. Parallel I/O
is more difficult to implement and may
perform slower compared to approach 2,
when the I/O requests are not coordinated
properly. An overview of the shared file
I/O model is provided in figure (1 b).

It is highly desirable to develop a set of
parallel APIs for accessing CGNS files that
employ appropriate parallel I/O techniques.
Programming convenience and support for
all types of CFD approaches, from block-
structured to unstructured, is a very important
design criteria, since scientific users may desire

to spend minimal effort on dealing with I/O
operations. This new parallel I/O API, together
with a queuing-approach to overcome some
limitations of HDF5 for a generally distributed
multi-block grid, and the benchmarks on the
parallel file system is the core of our storage
challenge entry.

A. The CGNS system

The specific purpose of the CFD General
Notation System (CGNS) project is to pro-
vide a standard for recording and recovering
computer data associated with the numerical
solution of the equations of fluid dynamics.
The intent is to facilitate the exchange of
Computational Fluid Dynamics (CFD) data be-
tween sites, between applications codes, and
across computing platforms, and to stabilize the
archiving of CFD data.

The CGNS system consists of three parts: (1)
the Standard Interface Data Structures, SIDS,
(2) the Mid-Level Library (MLL), and (3) the
low-level storage system, currently using ADF
and HDF5.

The "Standard Interface Data Structures"
specification constitutes the essence of the
CGNS system. While the other elements of
the system deal with software implementation
issues, the SIDS specification defines the sub-
stance of CGNS. It precisely defines the intel-
lectual content of CFD-related data, including
the organizational structure supporting such
data and the conventions adopted to standard-
ize the data exchange process. The SIDS are
designed to support all types of information
involved in CFD analysis. While the initial
target was to establish a standard for 3D-
structured multi-block compressible Navier-
Stokes analysis, the SIDS extensible framework
now includes unstructured analysis, configura-
tions, hybrid topology and geometry-to-mesh
association.

A CGNS file consists of nodes with names,
associated meta data and data. Figure 2 shows
the abstract layout of a CGNS file. The nodes
of a CGNS tree may or may not be in the

3

Figure 1: Storage topology of a modern computer cluster in two configurations. Configuration
(a) shows the traditional CFD approach to I/O, where each node writes a separate file to disk.
These files must be combined to obtain the full solution in a process which can be quite time
consuming. Configuration (b) shows the object of this proposal, a CFD I/O method in which the
partial solution from each node is written into the appropriate location within a single solution
file for the whole problem.

same file. CGNS provides the concept of links
(similar to soft links in a file system) between
nodes. This enables users to write the grid
coordinates in one file and then add links to
the solution written in several files to the grid
file. For a visualization system these linked files
would look like one big file containing the grid
and solution data.

Although the SIDS specification is indepen-
dent of the physical file formats, its design
was targeted towards implementation using the
ADF Core library, but one is able to define a
mapping to any other data storage format. Cur-
rently in CGNS 3.0, HDF5 is the recommended
storage format, but access to the older ADF
format is transparent to the users of the MLL.

1) ADF data format: The "Advanced Data
Format" (ADF) is a concept defining how data
is organized on the storage media. It is based
on a single data structure called an ADF node,
designed to store any type of data. Each ADF
file is composed of at least one node called the
"root". The ADF nodes follow a hierarchical
arrangement from the root node down. This
data format was the main format up to the 3.0

Figure 2: Typical layout of a CGNS file consist-
ing of a tree structure with meta data and data
stored under each tree node. The dashed link
shows that CGNS also supports the concept of
links to other nodes which reside in other files.

release.

2) HDF5 data format: In the current beta
version of CGNS 3.0, HDF5 is the default low-
level storage format. The format of an HDF5
file on disk encompasses several key ideas of

4

the HDF4 and AIO file formats as well as
addresses some shortcomings therein.

The HDF5 library uses these low-level ob-
jects to represent the higher-level objects that
are then presented to the user or to applications
through APIs. For instance, a group is an object
header that contains a message that points to
a local heap and to a B-tree which points to
symbol nodes. A data set is an object header
that contains messages that describe data type,
space, layout, filters, external files, fill value,
etc. with the layout message pointing to either
a raw data chunk or to a B-tree that points to
raw data chunks.

III. PARALLEL I/O FOR THE CGNS SYSTEM

To facilitate convenient and high-
performance parallel access to CGNS files,
we have defined a new parallel interface and
provide a prototype implementation. Since a
large number of existing users are running
their applications over CGNS, our parallel
CGNS design retains the original MLL API
and introduces extensions which are minimal
changes from the original API. Currently our
pCGNS library is intended as a companion
library to the CGNS Mid-Level Library, since
pCGNS only supports the writing of grids
and data arrays. The much smaller meta data
should still be written by a single process using
the standard CGNS library. The parallel API
is distinguished from the original serial API
by prefixing the C function calls with “cgp_”
instead of “cg_” as in the MLL API. Tabulated
in the appendix are the functions defined in
pcgnslib.h which constitute the pCGNS API
as it currently exists. The functions chosen
to be implemented in the initial version of
the library were selected on the basis of two
criteria. The first was the need for the function
to provide the most basic functionality of the
library. The second criteria was the possible
benefit from parallelization of the function.
The result of using these priorities is that the
pCGNS library can write the basic components
of a CGNS file needed for the standard CGNS

tools to function, but still provides routines for
parallel file access on the largest of the data
sets that need to be written to the file.

The CGNS Mid-level Library supports writ-
ing files in HDF5 as of version 2.5, but the
support is not native. The main library calls
are written to the ADF interface and HDF5
support is achieve through an ADF to HDF5
compatibility layer. While this solution works
well for serial operation, since ADF has no
support for parallel I/O, there is no way to
access HDF5’s parallel abilities through this
compatibility layer. Therefore the decision was
made that the new parallel routines would be
written directly to HDF5 with no connections
to ADF.

A limited prototype implementation was
done by Hauser and Pakalapati[7], [8]. In an
effort to improve performance and better in-
tegrate the parallel extension in to the CGNS
Mid-level Library, new routines are being writ-
ten which access HDF5 directly and take full
advantage of the collective I/O support in
HDF5 1.8. Much of the work is to provide
the basic structures in the file required for
the standard CGNS library to be able to read
files created by the new extension routines, but
the most important parts are in writing large
data sets describing CFD grids and solutions
on those grids in parallel. This is done with
functions which queue the I/O until a flush
function is called, at which point the write com-
mands are analyzed and executed with HDF5
calls. This is done to provide MPI-IO sufficient
data to effectively recognize the collective and
continuous nature of the data being written.

The parallel capabilities of HDF5 allow a
single array to be accessed by multiple pro-
cesses simultaneously. However, it is currently
not possible to access multiple arrays from a
single process simultaneously. This prevents
the implementation of parallel I/O in pCGNS
to allow for the most generic case of partition
and zone allocation.

To resolve this deficiency, the pCGNS library
implements an I/O queue. An application can

5

queue I/O operations and then flush them later.
This allows the flush routine to optimize the
operations for maximum bandwidth. Currently,
the flush routine simply executes the I/O op-
erations in the order they were added to the
queue, but based on the results of benchmark-
ing the flush routine will be modified to limit
the requests which cause multiple processes to
access a single array, since that operation is
slower than the others.

IV. RELATED WORK

Considerable research has been done on data
access for scientific applications. The work has
focused on data I/O performance and data man-
agement convenience. Three projects, MPI-
IO, HDF5 and parallel netCDF (PnetCDF) are
closely related to this research.

MPI-IO is a parallel I/O interface specified in
the MPI-2 standard. It is implemented and used
on a wide range of platforms. The most popular
implementation, ROMIO [9] is implemented
portably on top of an abstract I/O device layer
[10], [11] that enables portability to new under-
lying I/O systems. One of the most important
features in ROMIO is collective I/O operations,
which adopt a two-phase I/O strategy [12],
[13], [14], [15] and improve the parallel I/O
performance by significantly reducing the num-
ber of I/O requests that would otherwise result
in many small, noncontiguous I/O requests.
However, MPI-IO reads and writes data in a
raw format without providing any functionality
to effectively manage the associated meta data,
nor does it guarantee data portability, thereby
making it inconvenient for scientists to orga-
nize, transfer, and share their application data.

HDF is a file format and software, developed
at NCSA, for storing, retrieving, analyzing,
visualizing, and converting scientific data. The
most popular versions of HDF are HDF4 [16]
and HDF5 [17]. Both versions store multidi-
mensional arrays together with ancillary data
in portable, self-describing file formats. HDF4
was designed with serial data access in mind,
whereas HDF5 is a major revision in which its

API is completely redesigned and now includes
parallel I/O access. The support for parallel
data access in HDF5 is built on top of MPI-
IO, which ensures its portability. This move
undoubtedly inconvenienced users of HDF4,
but it was a necessary step in providing parallel
access semantics. HDF5 also adds several new
features, such as a hierarchical file structure,
that provide application programmers with a
host of options for organizing how data is
stored in HDF5 files. Unfortunately this high
degree of flexibility can sometimes come at the
cost of high performance, as seen in previous
studies [18], [19].

Parallel-NetCDF [20] is a library that pro-
vides high-performance I/O while still main-
taining file-format compatibility with Unidata’s
NetCDF [21]. In the parallel implementation
the serial netCDF interface was extended to
facilitate parallel access. By building on top
of MPI-IO, a number of interface advantages
and performance optimizations were obtained.
Preliminary test results show that the some-
what simpler netCDF file format coupled with
a parallel API combine to provide a very
high-performance solution to the problem of
portable, structured data storage.

V. BENCHMARKING SYSTEMS -
ARCHITECTURAL DETAILS

The HPC@USU infrastructure consists of
several clusters connected through a ProCurve
5412zl data center switch to shared NFS and
parallel storage. The entire configuration is
shown in the appendix. The details of the
compute and storage solutions are described in
the following subsections.

Our Wasatch cluster consists of 64 compute
nodes. Each compute node has two quad-core
AMD Opteron 2376 running at 2.3 GHz and
16 GByte of main memory. The cluster has two
interconnects: A DDR infiniband network con-
nects all nodes and is the network for parallel
simulations code, and a network consisting of
two bonded GBit networks, which connects the
cluster directly to the parallel storage system.

6

All clusters at Utah State University’s Center
for High Performance Computing have access
to the same network-attached storage (NAS)
so that researchers can freely utilize all of the
available computing resources. To accomplish
this, the large ProCurve data center switch is
the core switch connecting all storage and ad-
ministrative connections for the clusters. These
connections are independent of the message-
passing fabric of the clusters, which are unique
to each machine. The nodes of Wasatch, the
newest addition to our center, are all connected
to the core switch directly. Thus they enjoy the
highest speed access to the NAS.

The NAS system consists of four shelves of
the Panasas ActiveScale Storage Cluster with
20 TB each for a total raw capacity of 80
TB and a usable capacity of about 60 TB.
Panasas storage devices are network-attached
Object-based Storage Devices (OSDs). Each
OSD contains two Serial-ATA drives and suf-
ficient intelligence to manage the data that is
locally stored. Meta data is managed in a meta
data server, a computing node separate from
the OSDs but residing on the same physical
network. Clients communicate directly with the
OSD to access the stored data. Because the
OSD manages all low-level layout issues, there
is no need for a file server to intermediate
every data transaction. To provide data redun-
dancy and increase I/O throughput, the Panasas
ActiveScale File System (PanFS) stripes the
data of one file system across a number of
objects (one per OSD). When PanFS stripes
a file across 10 OSDs attached to a Gigabit
Ethernet (GE) network, PanFS can deliver up to
400 MB/sec split among the clients accessing
the file.

Processes from our compute nodes can in-
voke POSIX read/write function or call through
MPI-I/O or parallel HDF5 built on top of
MPI-I/O. For all of our benchmarks we are
using OpenMPI 1.3.3 with parallel I/O for the
PanFS enabled. The parallel extension to the
CGNS library, called pCGNS, uses the HDF5
library for all file access. HDF5 in turn uses

MPI-I/O for all parallel access to files. This
abstraction of the file system into layers of
libraries is crucial if a scientific code is to be
run at many sites with different hardware and
software configurations. In addition to these
libraries, custom test programs are being de-
veloped to provide CFD-like I/O requests to
test the performance of the pCGNS library.

VI. PARALLEL I/O CHARACTERIZATION

We ran two benchmarks to test the perfor-
mance of our implementation on current paral-
lel file systems: IOR [22] and a self developed
parallel CGNS benchmark program which cov-
ers most cases of parallel I/O for a structured
or unstructured CFD code. All benchmarks
were run five times and the averages of these
runs together with the standard deviation of the
results are plotted in the figures in this section.

A. IOR benchmark results
The IOR benchmarks were run with param-

eters to test the performance achievable on our
benchmarking system with HDF5. In Fig. 3 the
results for read and write are shown. IOR was
configured such that each process access 512
MB in a single file on disk using the HDF5
interface. These operations were done using
independent I/O to match the settings used to
benchmark pCGNS.

B. Benchmarks of the parallel CGNS imple-
mentation

To test the performance of the new library,
benchmark test programs have been written
which make CFD-like I/O requests to the li-
brary and measure how long each task takes to
complete. Five categories of benchmark were
selected to be run on the pCGNS library. The
data distribution for each of the benchmark
categories are shown in Figure (4).

Each scenario of data distribution models a
general method of splitting up data among the
processes of a parallel program. The scenarios
will be hereafter referred to by the designation

7

� ����� ����� ����� 	
��� ����� ���������������������
�

�����

�������

�������

�������

�������

� ��
����
� !"
#�$ %
&

')(+*-,/.1032543687�9;:=< >@?BAC03254;6D7�9FE125GIHJ>K?
LME5NO2PH
LQ< RSGUTVN

(a) Data for the entire cluster, scaling up to 8 processes per node

� ��� ��� ��� ��� 	
� ��� �����������
�����
�
�

	
���

�������

��	
���

�������

��	����

� ��
���
� !"#
$�% &
'

(*),+.-0/2143654798�:<;>= ?A@CBD14365<7E8�:GF236HJIK?L@
MNF6OP3QI
MR= STHVUWO

(b) Data for the entire cluster, only one process per node

Figure 3: Results of the IOR benchmark on our benchmarking system.

Figure 4: The five data distribution scenarios for benchmarking. Benchmark (a) has two separate
zones on one node, (b) has one zone per node on four nodes, (c) shows four zones on two node,
(d) shows two zones, each distribute between two nodes, on a total of four nodes, and finally
benchmark (e) shows four zones on four nodes with zones spread across multiple nodes.

each scenario bears in the figure. In all of the
benchmarks, the file size is kept constant, since
during practical use of the library the file size
will generally not be a function of the number
of nodes used for a simulation, but rather a
function of the simulation itself.

The data size in the benchmarks shown in
the following sections is the size in MB of an
individual array in the CGNS file. The CGNS
file for each benchmarks contains seven three-
dimensional double precision data arrays: the x,
y, z coordinates of the grid, the three velocity

components and a temperature field. In addition
an integer field containing the cell connectivity
is stored. A data size of 1024 means that seven
1024 MB arrays and one 512 MB array have
been written to the file.

1) I/O performance for a single node with
multiple zones: This type-a benchmark, ex-
plores the performance of the library when
multiple zones are stored on a single node.
This is the only benchmark in which multiple
processes are run on a single node. Normally
this is avoided since having multiple processes

8

on a node forces those processes to share a
single network connection, thus affecting the
measurement of the parallel performance of the
library. In the type-a benchmark, however, this
limitation is desired since it allows the single
process with multiple zones to have access to
the same storage bandwidth as the aggregate
bandwidth of multiple processes on the node.
The results are shown in Fig. 5.

2) I/O performance for one not partitioned
zone per process: The type-b benchmarks mea-
sure the performance of pCGNS in a config-
uration very close to the benchmarks run by
IOR. In this scenario, each node runs a single
process, and each process only writes a single
zone. Because each zone has its own data array
in the file, and each zone is written by a single
process, each process writes to a single data
array in the file. This benchmark resembles
a structured or unstructured multi-block code
where each process owns a single zone.

3) I/O performance for multiple not parti-
tioned zones per process: The type-c bench-
marks test the ability of the library to write
multiple zones from each node in parallel. Be-
cause the file size is kept constant, more zones
per node result in smaller data arrays written
to the file in each I/O operation. Since this is
expected to affect performance, multiple cases
are run with different numbers of zones per
node. This benchmark resembles a structured
or unstructured multi-block code where each
process owns several zones.

4) I/O performance for one partitioned zone
per process with multiple zones: Type-d bench-
marks test the ability of the library to write a
single zone from multiple nodes. This causes
multiple processes to access a single data array
simultaneously, which is quite different from
multiple processes accessing multiple data ar-
rays. In this scenario, each node only writes
to a single zone, but each zone is written to
by multiple processes. This is analogous to a
CFD code in which each processes must share
a single zone with another process.

5) I/O performance for multiple partitioned
zone per process with multiple zones: The last

scenario, type-e, tests the most general access
pattern, in which multiple processes access
each zone and multiple zones are accessed by
each process. This access pattern would result
from the zone definitions and parallel partition-
ing processes being completely independent
one from another. Thus, this is the most general
of the benchmarks and resembles a CFD code
in which each process must share several zones
with other processes.

C. Discussion

It can be observed from the benchmarks of
pCGNS that the write process is very depen-
dent on the amount of data being transferred.
Using larger data sets results in significantly
improved performance when writing to the file,
but does not affect the read performance. This
phenomenon can be explained by the extra
operations that must be executed in the case
of writing to the file, such as disk allocation
for the new data, etc. In the case of larger data
sets, the overhead is much smaller compared to
the time required to transfer the data itself, and
results in better performance. Read operations
have no need for disk allocation, and are not af-
fected. This also explains the performance seen
in the type-c benchmarks, since the addition of
more zones for each node results in more disk
allocations.

The optimal performance of the pCGNS
library is seen in the type-b benchmark. When
running on 24 nodes, the code writes the data
at more than 450 MB/s, which compares very
favorably with the 500 MB/s seen in the IOR
benchmark for the same number of processes
and nodes. The variance between pCGNS and
IOR is not large, and is likely caused by better
organization of the I/O and disk allocation in
the IOR benchmark, since pCGNS does not
know ahead of time what the I/O and data will
look like. The lesser performance of pCGNS
with larger numbers of nodes is likely due to
the decreasing size of the data per process,
whereas IOR keeps the data per process con-
stant.

9

� � � � � � � � �
	�
�������������

� �����

� �����

��� ���

��� ���

� �����

��� ���

� �
����
��
!"
#�$ %
&

')(+*-,/.10325476�8:9

;<2>=�23?A@CB�(EDGFIHKJ
;<2>=�23?A@CB�(EDLH5MKN
;<2>=�23?A@CB�(EDOMEF/H
;<2>=�23?A@CB�(EDGF/P)HRQ

(a) Read bandwidth.

� � � � � � � � �
	�
�������������

� �

���

���

� ���

��� �

� ���

� ���

��� �

� �
�� �
!� "
#$
%�& '
(

)+*-,/.1032547698�:<;
=>4@?�45ACBED�*GFIHKJML
=>4@?�45ACBED�*GFNJ7OMP
=>4@?�45ACBED�*GFQOGH1J
=>4@?�45ACBED�*GFIH1R+JTS

(b) Write bandwidth.

Figure 5: Multiple zones on one single node with up to eight cores.

� ��� ��� ��� ��� 	
� ��� ���
������
�

�����

�����

�����

�����

�������

�������

�������

�������

�������

� �
����
 � !
"#
$�% &
'

(*),+.-�/1032,465�78(
9:2<;=23>@?BA�)DCFE.G*HJI
9:2<;=23>@?BA�)DCKH1GJI,L
9:2<;=23>@?BA�)DCMI,G1NPO

(a) Read bandwidth

� ��� ��� ��� ��� 	
� ��� ���
������
�

�

�����

�����

�
���

�����

	
���

�����

� �
����
�� �
��
 �! "
#

$&%('*)�+-,/.(021�34$
56.879./:<;>=�%@?BA*C&DFE
56.879./:<;>=�%@?GD-CFE(H
56.879./:<;>=�%@?IE(C-JLK

(b) Write bandwidth

Figure 6: I/O performance for one non-partitioned zone per process

The read performance of pCGNS does not
compare as favorably with the IOR benchmark
as the write performance. The peak read per-
formance from pCGNS is seen with 16 nodes,
where it achieves a read bandwidth of ~1100
MB/s, whereas IOR sees ~1600 MB/s. After
this point, pCGNS’s performance drops off
while IOR’s continues to improve up to a peak
of 2500 MB/s. The post-peak performance is
again due to the increasing size of data with
IOR and constant data size with pCGNS. The
discrepancy in the range of lower node counts

is more indicative of the performance differ-
ence between IOR and pCGNS. This difference
may be caused by the fact that IOR runs a
single read request against the storage, whereas
the pCGNS benchmark runs seven. With data
rates so high compared to the size of the files
used, the difference due to added requests by
pCGNS may be the culprit responsible for the
performance drop.

10

� ��� ��� ��� ��� 	
� ��� ���
������
�

�

�����

�����

�����

�����

�������

�������

�������

�������

�������

� �
����
 � !
"#
$�% &
'

(*),+�-�.0/214365�798;:=<?>0>A@CB

DE1?FG1IH,JK<�)L@9MON*B=P
DE1?FG1IH,JK<�)L@QB0N=PAR
DE1?FG1IH,JK<�)L@SPAN0T4U

(a) Read bandwidth

� ��� ��� ��� ��� 	
� ��� ���
������
�

	��

�����

��	��

�����

��	
�

�
���

��	��

�����

� �
����
�� �
�
!�" #
$

%'&)(�*�+-,/.1032�46587:9<;-;>=@?

AB.DCE.GFIHJ9�&K=MLON1?QP
AB.DCE.GFIHJ9�&K=@?-NRP1S
AB.DCE.GFIHJ9�&K=TP>N'U'V

(b) Write bandwidth

Figure 7: I/O performance for two non-partitioned zones per process

� ��� ��� ��� ��� 	
� ��� ���
������
�

�

�����

�����

�����

�����

�������

�������

�������

�������

�������

� �
����
 � !
"#
$�% &
'

(*),+.-�/10325476�8:9<;>=@?1?5ACB

DE2@FG2IHKJL=�)MAON.P*Q>B
DE2@FG2IHKJL=�)MARQ1P>B,S
DE2@FG2IHKJL=�)MACB,P1T5U

(a) Read bandwidth

� ��� ��� ��� ��� 	
� ��� ���
������
�

	��

�����

��	��

�����

��	
�

�
���

��	��

� �
����
�� �
��
 �! "
#

$&%('*)�+-,/.1032�46587:9<;-;1=?>

@A.<BC.EDGFH9�%I=KJ*L&M:>
@A.<BC.EDGFH9�%I=NM-L:>(O
@A.<BC.EDGFH9�%I=?>(L-P1Q

(b) Write bandwidth

Figure 8: I/O performance for four non-partitioned zones per process

VII. SUMMARY

The presented solution to the problem of
high performance parallel CFD I/O provides
an extension to the existing CGNS standard
Mid-Level Library API. This API provides the
CFD application developer with a general way
to write mesh and solution data to the CGNS
file in parallel for multi-block structured and
unstructured grids. To get the best performance
for CFD codes with multiple block distribute
in a general way over an existing set of node,

I/O requests are queued until a flush function
is called, at which point the write commands
are analyzed, reorganized for best performance,
and executed with HDF5 calls. This is done
to provide MPI-IO sufficient data to effectively
recognize the collective and continuous nature
of the data being written.

This challenge entry has provided bench-
mark data on a four shelf Panasas ActiveScale
Storage Cluster and a 64 node compute cluster,
demonstrating how much I/O performance for
an unsteady structured and unstructured multi-

11

� ��� ��� ��� ��� 	
� ��� ���
������
�

�

�����

�����

�����

�����

�������

�������

�������

�������

�������

� �
����
 � !
"#
$�% &
'

(*),+.-�/1032,465�798;:=<?>*>A@CB

DE2GFH23IKJL<�)M@ON.P*Q=R
DE2GFH23IKJL<�)M@SQ1P=R,B
DE2GFH23IKJL<�)M@TR,P1UAV

(a) Read bandwidth

� ��� ��� ��� ��� 	
� ��� ���
������
�

	��

�����

��	��

�����

��	
�

�
���

��	��

� �
����
�� �
��
 �! "
#

$&%('*)�+-,/.(021�3547698;:&:=<?>

@A.CBD./EGFH8�%I<KJ*L&M9N
@A.CBD./EGFH8�%I<OM-L9N(>
@A.CBD./EGFH8�%I<PN(L-Q=R

(b) Write bandwidth

Figure 9: I/O performance for eight non-partitioned zones per process

� ��� ��� ��� ��� 	
� ��� ���
������
�

	
���

�����

�
���

�����

�����

�������

�������

�������

���
���

�������

� �
�� �
!� "
#$
%�& '
(

)+*-,�.�/10325476�8:9
9;2=<>2@?-ACB�*EDGFIH+JLK
9;2=<>2@?-ACB�*EDMJ1HLKON
9;2=<>2@?-ACB�*EDPKOH1Q5R

(a) Read bandwidth

� ��� ��� ��� ��� 	
� ��� ���
������
�

�����

��	��

�����

��	
�

�
���

��	��

�����

� �
����
�� �
�
!�" #
$

%'&)(�*�+-,/.1032�465

57.98:.<;>=@?�&BADCFE1GIH
57.98:.<;>=@?�&BAJG-EKH1L
57.98:.<;>=@?�&BAMHNE'O'P

(b) Write bandwidth

Figure 10: I/O performance for one partitioned zone per process

block CFD application can be expected.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Bruce
Wedan for making the initial CGNS 3.0 im-
plementation available, and his contribution to
CGNS. Part of the work was support by the
National Science Foundation under Grant CTS-
0321170 and USDA-CREES under the project
“High performance computing Utah”.

REFERENCES

[1] Poirier, D., Allmaras, S. R., McCarthy, D. R., Smith,
M. F., and Enomoto, F. Y., “The CGNS System,” AIAA
Paper 98-3007, 1998. 1

[2] Poirier, D. M. A., Bush, R. H., Cosner, R. R., Rumsey,
C. L., and McCarthy, D. R., “Advances in the CGNS
Database Standard for Aerodynamics and CFD,” AIAA
Paper 2000-0681, 2000. 1

[3] Legensky, S. M., Edwards, D. E., R. H. Bush, D. M. A. P.,
Rumsey, C. L., Cosner, R. R., and Towne, C. E., “CFD
General Notation System (CGNS): Status and Future
Directions,” AIAA Paper 2002-0752, 2002. 1

[4] Jespersen, D., Pulliam, T., and Buning, P., “Recent
Enhancements to OVERFLOW,” InAIAA Proceedings,
Paper No. 970644, 1997, pp. 97–0644. 2

12

� ��� ��� ��� ��� 	
� ��� ���
������
�

	
���

�����

�
���

�����

�����

�������

�������

�������

���
���

�������

� �
�� �
!� "
#$
%�& '
(

)+*-,�.�/+0214365�798
:;1=<>12?-@BA�*DCFEHG+IKJ
:;1=<>12?-@BA�*DCLIMGKJON
:;1=<>12?-@BA�*DCPJOGMQ4R

(a) Read bandwidth

� ��� ��� ��� ��� 	
� ��� ���
������
�

	��

�����

��	��

�����

��	
�

�
���

��	��

�����

� �
����
�� �
�
!�" #
$

%'&)(�*�+',.-0/21�354
67-98:-.;)<>=�&@?BADC'EGF
67-98:-.;)<>=�&@?HEICGFKJ
67-98:-.;)<>=�&@?LFKCIM0N

(b) Write bandwidth

Figure 11: I/O performance for two partitioned zones per process

[5] Weller, H., Tabor, G., Jasak, H., and Fureby, C., “A ten-
sorial approach to computational continuum mechanics
using object orientied techniques,” Computers in Physics,
Vol. 12, No. 6, 1998, pp. 620 – 631. 2

[6] Interface, M. P., “MPI-2: Extensions to the Message-
Passing Interface,” 1996. 2

[7] Hauser, T., “Parallel I/O for the CGNS system,” AMERI-
CAN INSTITUTE OF AERONAUTICS AND ASTRONAU-
TICS, , No. 1090, 2004. 4

[8] Parimala D. Pakalapati, T. H., “Benchmarking Paral-
lel I/O Performance for Computational Fluid Dynamics
Applications,” AIAA Aerospace Sciences Meeting and
Exhibit, Vol. 43, 2005. 4

[9] Thakur, R., Ross, R., Lusk, E., and Gropp, W., “Users
Guide for ROMIO: A High-Performance, Portable MPI-
IO Implementation,” Tech. Rep. Technical Memorandum
No. 234, Mathematics and Computer Science Division,
Argonne National Laboratory, Revised January 2002. 5

[10] Thakur, R., Gropp, W., , and Lusk, E., “An Abstract-
Device interface for Implementing Portable Parallel-I/O
Interfaces(ADIO),” Proceedings of the 6th Symposium on
the Frontiers of Massively Parallel Computation, October
1996, pp. 180–187. 5

[11] Thakur, R., Gropp, W., , and Lusk, E., “On Implementing
MPI-I/O Portably and with High Performance,” Proceed-
ings of the Sixth Workshop on Input/Output in Parallel
and Distributed Systems, May 1999, pp. 23–32. 5

[12] Rosario, J., Bordawekar, R., , and Choudhary, A., “Im-
proved Parallel I/O via a Two-Phase Run-time Access
Strategy,” IPPS ’93 Parallel I/O Workshop, February
1993. 5

[13] Thakur, R., Bordawekar, R., Choudhary, A., and Pon-
nusamy, R., “PASSION Runtime Library for Parallel
I/O,” Scalable Parallel Libraries Conference, October
1994. 5

[14] Thakur, R. and Choudhary, A., “An Extended Two-Phase
Method for Accessing Sections of Out-of-Core Arrays,”

Scientific Programming, Vol. 5, No. 4, 1996, pp. 301–
317. 5

[15] Thakur, R., Gropp, W., and Lusk, E., “Data Sieving and
Collective I/O in ROMIO,” Proceeding of the 7th Sympo-
sium on the Frontiers of Massively Parallel Computation,
February 1999, pp. 182–189. 5

[16] “HDF4 Home Page,” The National Center for Supercom-
puting Applications. http://hdf.ncsa.uiuc.edu/hdf4.html. 5

[17] “HDF5 Home Page, The National Center for Supercom-
puting Applications,” http://hdf.ncsa.uiuc.edu/HDF5/. 5

[18] Li, J., Liao, W., Choudhary, A., and Taylor, V., “I/O
Analysis and Optimization for an AMR Cosmology Ap-
plication,” Proceedings of IEEE Cluster 2002, Chicago,
IL, September 2002. 5

[19] Ross, R., Nurmi, D., Cheng, A., and Zingale, M., “A Case
Study in Application I/O on Linux Clusters,” Proceedings
of SC2001, Denver, CO, November 2001. 5

[20] Li, J., keng Liao, W., Choudhary, A., Ross, R., Thakur,
R., Gropp, W., Latham, R., and Siegel, A., “Parallel
netCDF: A High-Performance Scientific I/O Interface,”
Proceedings of the Supercomputering 2003 Conference,
Phoenix, AZ, November 2003. 5

[21] Rew, R. and Davis, G., “The Unidata netCDF: Soft-
ware for Scientific Data Access,” Sixth International
Conference on Interactive Information and Processing
Systems for Meteorology, Oceanography and Hydrology,
Anaheim, CA, February 1990. 5

[22] “IOR HPC Benchmark,” Soureforge http://sourceforge.
net/projects/ior-sio/. 6

http:// hdf.ncsa.uiuc.edu/hdf4.html
http://hdf.ncsa.uiuc.edu/HDF5/
http://sourceforge.net/projects/ior-sio/
http://sourceforge.net/projects/ior-sio/

w w w . h p c . u s u . e d u 	

An	 Efficient	 and	 Flexible	 Parallel	 I/O	
implementa<on	 for	 the	 CFD	 General	

Nota<on	
System	

Kyle	 Horne,	 Nate	 Benson	
Center	 for	 High	 Performance	 Compu<ng,	

Utah	 State	 University	
Thomas	 Hauser	

Associate	 Director	 Research	 Compu<ng	
Northwestern	 University	

w w w . h p c . u s u . e d u 	

•  CGNS	
•  Parallel	 I/O	 for	 CGNS	
•  Benchmarking	 system	

•  Benchmarking	 results	
–  IOR	
– Parallel	 CGNS	

Outline	

w w w . h p c . u s u . e d u 	

What	 is	 CGNS	 ?	
•  CFD	 General	 Nota<on	 System	

–  Principal	 target	 is	 the	 data	 normally	 associated	 with	 compressible	
viscous	 flow	 (i.e.	 Navier-‐Stokes)	

–  Applicable	 to	 computa<onal	 field	 physics	 in	 general	 with	 augmenta<on	
of	 the	 data	 defini<ons	 and	 storage	 conven<ons	

•  Objec<ves	
–  Provide	 a	 general,	 portable	 and	 extensible	 standard	 for	 the	 storing	 and	

retrieval	 of	 CFD	 analysis	 data	
–  Offer	 seamless	 communica<on	 of	 CFD	 analysis	 data	 between	 sites,	

applica<ons	 and	 system	 architectures	
–  Eliminate	 the	 overhead	 costs	 due	 to	 file	 transla<on	 and	 mul<plicity	 of	

data	 sets	 in	 various	 formats	
–  Provide	 free,	 open	 soXware	 –	 GNU	 Lesser	 General	 Public	 License	

w w w . h p c . u s u . e d u 	

What	 is	 CGNS	 ?	
•  Standard	 Interface	 Data	 Structures	 (SIDS)	

–  Collec<on	 of	 conven<ons	 and	 defini<ons	 that	 defines	 the	 intellectual	 content	
of	 CFD-‐related	 data.	

–  Independent	 of	 the	 physical	 file	 format	

•  SIDS	 to	 ADF	 Mapping	
–  Advanced	 Data	 Format	

•  SIDS	 to	 HDF5	 Mapping	
–  Defines	 how	 the	 SIDS	 is	 represented	 in	 HDF5	

•  CGNS	 Mid-‐Level	 Library	 (MLL)	
–  High	 level	 Applica<on	 Programming	 Interface	 (API)	 which	 conforms	 closely	 to	

the	 SIDS	
–  Built	 on	 top	 of	 ADF/HDF5	 and	 does	 not	 perform	 any	 direct	 I/O	 opera<on	

w w w . h p c . u s u . e d u 	

CGNS	

w w w . h p c . u s u . e d u 	

I/O	 Needs	 on	 Parallel	 Computers	

•  High	 Performance	
–  Take	 advantage	 of	 parallel	 I/O	 paths	 (when	 available)	
–  Support	 for	 applica<on-‐level	 tuning	 parameters	

•  Data	 Integrity	
–  Deal	 with	 hardware	 and	 power	 failures	 sanely	

•  Single	 System	 Image	
–  All	 nodes	 "see"	 the	 same	 file	 systems	
–  Equal	 access	 from	 anywhere	 on	 the	 machine	

•  Ease	 of	 Use	
–  Accessible	 in	 exactly	 the	 same	 ways	 as	 a	 tradi<onal	 UNIX-‐style	 file	 system	

w w w . h p c . u s u . e d u 	

•  New	 parallel	 interface	
•  Perform	 I/O	 collec<vely	
•  Poten<al	 I/O	 op<miza<ons	

for	 beaer	 performance	

•  CGNS	 integra<on	
•  Overcome	 HDF5	 limita<on	

because	 of	 mul<	 block	 data	
par<<oning	
–  Introduce	 I/O	 queue	
–  Flush	 queue	 and	 write	 to	 disk	

Parallel	 CGNS	 I/O	

7	

w w w . h p c . u s u . e d u 	

Parallel	 CGNS	 API	

w w w . h p c . u s u . e d u 	

Benchmarking	 environment	
Wasatch

...
Node 1

Node 2

Node 64

Infiniband
M

yrinet

Node 1

Node 32

...
Node 33

Node 64

...

Uinta

1 G
bit

1 G
bit

/home

/opt

/panfs

Data Center
Switch

w w w . h p c . u s u . e d u 	

IOR	 results	

w w w . h p c . u s u . e d u 	

Benchmarks	 for	 pCGNS	

w w w . h p c . u s u . e d u 	

Reading	 one	 par<<oned	 zone	
per	 process	 with	 mul<ple	 zones	

w w w . h p c . u s u . e d u 	

Wri<ng	 one	 par<<oned	 zone	
per	 process	 with	 mul<ple	 zones	

w w w . h p c . u s u . e d u 	

Reading	 mul<ple	 par<<oned	 zone	
per	 process	 with	 mul<ple	 zones	

w w w . h p c . u s u . e d u 	

Wri<ng	 mul<ple	 par<<oned	 zone	
per	 process	 with	 mul<ple	 zones	

w w w . h p c . u s u . e d u 	

•  Created	 a	 parallel	 library	 for	 CGNS	 data	 I/O	
•  Cover	 all	 I/O	 paaerns	 supported	 for	 mul<-‐
block	 structured	 and	 unstructured	
performance	

•  Implemented	 a	 queuing	 approach	 for	 I/O	
request	 since	 HDF5	 can	 write	 only	 in	 one	 array	
at	 a	 <me	

•  Achieved	 good	 performance	 for	 a	 high	 level	
library	 compared	 to	 IOR	 on	 our	 benchmarking	
system	

Conclusion	

13

APPENDIX

14

Root node

CGNSBase_tCGNSLibraryVersion_t

Zone 1 Zone 2 ConvergenceHistory_t ReferenceState_t

GridCoordinates_tElements_t FlowSolution_t ZoneGridConnectivity_t

Zone_t Zone_t

ElementConnectivity CoordinateY
DataArray_t DataArray_t

GridLocation Density Pressure
GridLocation_t DataArray_t DataArray_t

ZoneBC_t

CoordinateX
DataArray_t

Figure 12: Example CGNS file with zone being the node containing grid and solution information.

Table I: API of the pCGNS library as implemented in pcgnslib.c and declared in pcgnslib.h.
Software using the library to access CGNS files in parallel must use the routines listed here.

General File Operations
cgp_open Open a new file in parallel
cgp_base_read Read the details of a base in the file
cgp_base_write Write a new base to the file
cgp_nbases Return the number of bases in the file
cgp_zone_read Read the details of a zone in the base
cgp_zone_type Read the type of a zone in the base
cgp_zone_write Write a zone to the base
cgp_nzones Return the number of zones in the base

Coordinate Data Operations
cgp_coord_write Create the node and empty array to store coordinate data
cgp_coord_write_data Write coordinate data to the zone in parallel

Unstructured Grid Connectivity Operations
cgp_section_write Create the nodes and empty array to store grid connectivity for an unstructured

mesh
cgp_section_write_data Write the grid connectivity to the zone in parallel for an unstructured mesh

Solution Data Operations
cgp_sol_write Create the node and empty array to store solution data
cgp_sol_write_data Write solution data to the zone in parallel

General Array Operations
cgp_array_write Create the node and empty array to store general array data
cgp_array_write_data Write general array data to the zone in parallel

Queued I/O Operations
queue_slice_write Queue a write operation to be executed later
queue_flush Execute queued write operations

15

Wasatch

...
Node 1

Node 2

Node 64

Infiniband
M

yrinet

Node 1

Node 32

...
Node 33

Node 64

...

Uinta

1 G
bit

1 G
bit

/home

/opt

/panfs

Data Center
Switch

Figure 13: Topology of cluster’s network attached storage at Utah State University. The older
cluster Uinta is connected to the root switch through either one or two gigabit switches, whereas
all nodes in the new cluster Wasatch are connected directly to the root switch. All the storage is
connected directly to the root switch, including a parallel storage solution from Panasas mounted
on /panfs.

	I Introduction
	II I/O for Computational Fluid Dynamics Simulations
	II-A The CGNS system
	II-A1 ADF data format
	II-A2 HDF5 data format

	III Parallel I/O for the CGNS system
	IV Related Work
	V Benchmarking Systems - Architectural Details
	VI Parallel I/O Characterization
	VI-A IOR benchmark results
	VI-B Benchmarks of the parallel CGNS implementation
	VI-B1 I/O performance for a single node with multiple zones
	VI-B2 I/O performance for one not partitioned zone per process
	VI-B3 I/O performance for multiple not partitioned zones per process
	VI-B4 I/O performance for one partitioned zone per process with multiple zones
	VI-B5 I/O performance for multiple partitioned zone per process with multiple zones

	VI-C Discussion

	VII Summary
	VIII Acknowledgements
	References
	Appendix

