
CGNS/SIDS proposal for extensions – 2011/11/16 – v0.6 – Family Hierarchy
Author: Marc Poinot, ONERA/DSNA
Contact: marc.poinot@onera.fr

Definition of a Hierarchy of families

This is version 0.5, taking into comments and modifications received from:

Chris Rumsey, NASA

Xiangmin Jiao, University of Stony Brook

Leigh Lapworth, Rolls Royce

Robert Bush, Pratt & Whitney

Richard Hann, ANSYS

Will Stoffers, Boeing

Specific Q&A can be found at the end of the proposal.

We want to allow a hierarchy of Families. For example we want to have a Plane label
1

 identifying all zones

that belong to the airplane, a Wing label identifying the wings and so on. All Wing zones would have both the

Plane and the Wing label and we would like to declare that Wing is child label of Plane, or that Plane is the

parent of Wing. When an application is parsing a zone, it can find more than one label and we have to insure

backward compatibility with existing CGNS versions. We give details in the following sections.

We use the Family concept of CGNS/SIDS for that purpose because it is close to our needs. The proposal is

given in Sections 2 and 3 below. First, we need to go back to this Family concept in CGNS/SIDS to be clear

on the actual effect of the extension to existing CGNS/SIDS.

1

 In this document, label does NOT refer to the CGNS/SIDS label or node type except in the section 3 example. A label is a
string.

1. CGNS/SIDS Family concept

A CGNS/SIDS Family is no more than a label. The main goal is to factorize in a single node (the Family)

some data that can be referred to by other nodes without copying this data. This reduces update, maintenance

and as minor effect the disk or memory footprint of a CGNS tree. The implementation in a CGNS/SIDS tree

of nodes has two aspects:

The declaration:

A declaration of a family consists in a new Family_t node as a child of a CGNSBase_t node. This

new node has a CGNS/SIDS type Family_t, a name (so-called the family name) but no value (all

information is declared in the children of this Family_t node)
2
. As a CGNSBase_t node may have

more than one Family_t, its CGNS/SIDS definition in CGNSBase_t is:

List(Family_t Family1... FamilyN) ; (o)

Which does not define a list as a type, but rather defines an unordered set of children with the same

type, such a declaration is equivalent to:

Family_t Family1; (o)

Family_t Family2; (o)

...

Family_t FamilyN; (o)

With Family1 to FamilyN user defined names of the Family_t nodes. There is no Family_t node

reserved name. The Family_t nodes can only be defined as children of a CGNSBase_t node. One can

currently add children nodes to the Family_t node, as specified in CGNS/SIDS section 12.6.

The reference:

The actual use or reference to a family consists in the addition of the name of a family as child of a

Zone_t, a ZoneSubRegion_t or a BC_t node. The reserved name for this node is FamilyName, its

value (or contents) is the actual name of the referred-to family. An example of a CGNS/SIDS

definition, in the Zone_t here, is: FamilyName_t FamilyName;

This reference is then no more than a label, the application using such a CGNS tree has to find the

corresponding Family_t node and parse its children to get the actual information. As a matter of fact,

only one FamilyName_t node is allowed as child of a Zone_t, a ZoneSubRegion_t or a BC_t node,

due to the reserved and mandatory name FamilyName.

Remarks on implementation into CGNS/MLL

The CGNSBase_t level functions always define the familyname as argument. It is possible to have more than

one Family_t node at CGNSBase_t level. A new FamilyName_t node is added using first a cg_goto to set

the current cursor as a Zone_t, ZoneSubRegion_t or BC_t node. Then a cg_famname_read or

cg_famname_write is used to get/set the value of the FamilyName_t. The implementation looks for

FamilyName_t nodes, if the number is more than one there is an error. The write forces the FamilyName

name for the node. The actual storage of the family name in zone, zonesubregion and bc nodes is a char_33

(again only one value can be stored).

2

 A CGNS/SIDS node has a type, a name and a value. FamilyName_t is a type, FamilyName is a name, LeftWing is

a value. In this case the value refers to another node name: Family_t is the type, LeftWing is the name, no value.

2. CGNS/SIDS extension proposal

We propose to allow a new list of FamilyName_t nodes as children of the Family_t. These names would

refer to an existing Family_t node. This creates a relationship between two or more Family_t nodes.

A hierarchy of families is then possible, because we can decide that a specific FamilyName_t node value

(not the name) refers to its parent. (It is also allowable but more difficult to define children, because one

would have to create an extensible table or list with all children, and would have to update this table each

time a child is added or removed.) By definition, the FamilyName_t with the name FamilyParent would

have the current Family_t node parent as its value. The FamilyParent name is reserved for this purpose.

For example, one could define Wings as parent of LeftWing, and LeftWing as parent of LeftFlap. In other

words, a child has knowledge about his parent, but a parent does not know how many children it has, unless

the user application makes such a computation.

A family is also allowed to be a member of multiple other auxiliary families, if desired. For example, one

could have LeftFlap not only be a child of LeftWing, but also be a subset of some secondary family called

Output#1 for postprocessing purposes. Such a simple extension could be used to mimic some CAD related

hierarchy.

 Family_t :=
 {

 List(Descriptor_t Descriptor1 ... DescriptorN) ; (o)

 FamilyBC_t FamilyBC ; (o)

 List(GeometryReference_t

 GeometryReference1 ... GeometryReferenceN) ; (o)

 RotatingCoordinates_t RotatingCoordinates ; (o)

 List(FamilyName_t FamilyName1 … FamilyNameN) ; (o)

 List(UserDefinedData_t UserDefinedData1 ... UserDefinedDataN) ; (o)

 int Ordinal ; (o)

 } ;

Remarks:

1- Depending on the user’s particular use of families, there can be overlapping or even

inconsistent definitions when constructing a tree of families. It is strongly recommended

that the Family hierarchy should be a directed acyclic graph. However, it is the

responsibility of the application to manage the hierarchy parse and to check possible

loops.

2- The FamilyName_t node name FamilyParent is reserved and refers to the primary parent

family of the current Family_t node.

3- This proposal is tied closely to CPEX 0034, which defines Zone_t, ZoneSubRegion_t and

BC_t nodes modifications regarding families.

3. Example

The following example shows the construction of a tree of family information using

FamilyName_t=‘FamilyParent’, with the data in the FamilyName_t node giving the name of the parent

family. Also shown is the use of other (auxiliary) FamilyName_t nodes, to associate the current family

under a different useful grouping (in this case for postprocessing and for defining a deformable structure).

Label=CGNSBase_t;

 Label=Family_t; name=’Wings’

 Label=Family_t; name=’LeftWing’

 Label=FamilyName_t; name=’FamilyParent’; data=’Wings’

 Label=Family_t; name=’RightWing’

 Label=FamilyName_t; name=’FamilyParent’; data=’Wings’

 Label=Family_t; name=’LeftFlap’

 Label=FamilyName_t; name=’FamilyParent’; data=’LeftWing’

 Label=FamilyName_t; name=’PostProcessing’; data=’Output#1’

 Label=Family_t; name=’RightFlap’

 Label=FamilyName_t; name=’FamilyParent’; data=’RightWing’

 Label=FamilyName_t; name=’PostProcessing’; data=’Output#1’

 Label=FamilyName_t; name=’StructureFamily’; data=’Deformable’

 Label=Family_t; name=Output#1

 DataArray_t SomeCoefficient=’0.2’

 Label=Family_t; name=Deformable’

 DataArray_t Values=’ForceX ForceY ForceZ’

4. Questions and Answers

How can I identify whether a family is a parent or a child?

You can identify a family (Family_t) as being a child because it has a parent (FamilyName_t Parent). You

cannot say if a family is the parent of another one without parsing all the families of a CGNSBase_t and

finding at least one Family_t node defining it as its parent.

How about consistency?

There is no consistency check. You can create cyclic parent/child relationship, you can define a parent which

doesn't exist.

Is there other consistency issues in CGNS/SIDS that require a management by the application?

You can find some, for example:

A FamilyName_t can refer to a non existing Family_t.

You can have surface points not defined as BC nor zone to zone connectivity.

A time dependant structure can refer to non existing solutions, grids, connectivities...

A zone connectivity can refer to a non existing zone.

Two incompatible different boundary conditions can be defined on the same patch.

An element connectivity can define non-allowed parent elements.

A non-commutative rotation can be defined.

...

How about self-contained declaration of a Zone_t for example?

The FamilySpecified BCs of a zone are defined outside of the Zone. Same for the ReferenceState in case of

global referencestate use.

I understand the Parent FamilyName_t in the Family_t, what about the other FamilyName_t?

We define a default hierarchy with the Parent node. The user can define its own hierarchy using his own

node name or define a subset of families for a specific purpose. In the example, the subset 'Deformable'

would refer to a set of families that would allow their zones to be deformable.

Why can't we have a single FamilyName_t node in a Zone_t which refers to the deepest child family in

the hierarchy, so we could find the ancestors by parsing the Family_t nodes?

We could but some FamilyName_t are not related to the hierarchy but to a subset. For example 'Deformable'.

