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TimeAccurate,
NonTimeAccurate ) ;

DataClass describes the global default for the class of data contained in the CGNS database. If the
CGNS database contains dimensional data (e.g., velocity with units of m/s), DimensionalUnits
may be used to describe the system of units employed.

FlowEquationSet contains a description of the governing flow equations associated with the entire
CGNS database. This structure contains information on the general class of governing equations
(e.g., Euler or Navier-Stokes), equation sets required for closure, including turbulence modeling and
equations of state, and constants associated with the equations.

DataClass, DimensionalUnits, ReferenceState and FlowEquationSet have special function in
the CGNS hierarchy. They are globally applicable throughout the database, but their precedence
may be superseded by local entities (e.g., within a given zone). The scope of these entities and the
rules for determining precedence are treated in Section 6.4.

Globally relevant convergence history information is contained in GlobalConvergenceHistory.
This convergence information includes total configuration forces, moments, and global residual and
solution-change norms taken over all the zones.

Miscellaneous global data may be contained in the IntegralData_t list. Candidates for inclusion
here are global forces and moments.

The Family_t data structure, defined in Section 12.6, is used to record geometry reference data. It
may also include boundary conditions linked to geometry patches. For the purpose of defining ma-
terial properties, families may also be defined for groups of elements. The family-mesh association
is defined under the Zone_t and BC_t data structures by specifying the family name corresponding
to a zone or a boundary patch.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

6.3 Zone Structure Definition: Zone_t

The Zone_t structure contains all information pertinent to an individual zone. This information
includes the zone type, the number of cells and vertices making up the grid in that zone, the
physical coordinates of the grid vertices, grid motion information, the family, the flow solution,
zone interface connectivity, boundary conditions, and zonal convergence history data. Zonal data
may be recorded at multiple time steps or iterations. In addition, this structure contains a reference
state, a set of flow equations and dimensional units that are all unique to the zone. For unstructured
zones, the element connectivity may also be recorded.

ZoneType_t := Enumeration(
Null,
Structured,
Unstructured,
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UserDefined ) ;

Zone_t< int CellDimension, int PhysicalDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

ZoneType_t ZoneType ; (r)

int[IndexDimension] VertexSize ; (r)
int[IndexDimension] CellSize ; (r)
int[IndexDimension] VertexSizeBoundary ; (o/d)

List( GridCoordinates_t<IndexDimension, VertexSize>
GridCoordinates, MovedGrid1 ... MovedGridN ) ; (o)

List( Elements_t Elements1 ... ElementsN ) ; (o)

List( RigidGridMotion_t RigidGridMotion1 ... RigidGridMotionN ) ; (o)

List( ArbitraryGridMotion_t
ArbitraryGridMotion1 ... ArbitraryGridMotionN ) ; (o)

FamilyName_t FamilyName ; (o)

List( FlowSolution_t<CellDimension, IndexDimension, VertexSize, CellSize>
FlowSolution1 ... FlowSolutionN ) ; (o)

List( DiscreteData_t<CellDimension, IndexDimension, VertexSize, CellSize>
DiscreteData1 ... DiscreteDataN ) ; (o)

List( IntegralData_t IntegralData1 ... IntegralDataN ) ; (o)

ZoneGridConnectivity_t<IndexDimension, CellDimension>
ZoneGridConnectivity ; (o)

ZoneBC_t<CellDimension, IndexDimension, PhysicalDimension> ZoneBC ; (o)

ZoneIterativeData_t<NumberOfSteps> ZoneIterativeData ; (o)

ReferenceState_t ReferenceState ; (o)

RotatingCoordinates_t RotatingCoordinates ; (o)

DataClass_t DataClass ; (o)
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DimensionalUnits_t DimensionalUnits ; (o)

FlowEquationSet_t<CellDimension> FlowEquationSet ; (o)

ConvergenceHistory_t ZoneConvergenceHistory ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t, Elements_t, RigidGridMotion_t, ArbitraryGrid-
Motion_t, FlowSolution_t, DiscreteData_t, IntegralData_t, and UserDefinedData_t
lists are as shown; users may choose other legitimate names. Legitimate names must be
unique within a given instance of Zone_t and shall not include the names DataClass, Di-
mensionalUnits, FamilyName, FlowEquationSet, GridCoordinates, Ordinal, Reference-
State, RotatingCoordinates, ZoneBC, ZoneConvergenceHistory, ZoneGridConnectivity,
ZoneIterativeData, or ZoneType.

2. The original grid coordinates should have the name GridCoordinates. Default names for
the remaining entities in the GridCoordinates_t list are as shown; users may choose other
legitimate names, subject to the restrictions listed in the previous note.

3. ZoneType, VertexSize, and CellSize are the only required fields within the Zone_t struc-
ture.

Zone_t requires the parameters CellDimension and PhysicalDimension. CellDimension, along
with the type of zone, determines IndexDimension; if the zone type is Unstructured, IndexDi-
mension = 1, and if the zone type is Structured, IndexDimension = CellDimension. These three
structure parameters identify the dimensionality of the grid-size arrays. One or more of them are
passed on to the grid coordinates, flow solution, interface connectivity, boundary condition and
flow-equation description structures.

VertexSize is the number of vertices in each index direction, and CellSize is the number of cells
in each direction. For example, for structured grids in 3-D, CellSize = VertexSize - [1,1,1],
and for unstructured grids in 3-D, CellSize is simply the total number of 3-D cells. VertexSize
is the number of vertices defining “the grid” or the domain (i.e., without rind points); CellSize is
the number of cells on the interior of the domain. These two grid-size arrays are passed onto the
grid-coordinate, flow-solution and discrete-data substructures.

If the nodes are sorted between internal nodes and boundary nodes, then the optional parameter
VertexSizeBoundary must be set equal to the number of boundary nodes. If the nodes are sorted,
the grid coordinate vector must first include the boundary nodes, followed by the internal nodes.
By default, VertexSizeBoundary equals zero, meaning that the nodes are unsorted. This option
is only useful for unstructured zones. For structured zones, VertexSizeBoundary always equals 0
in all index directions.
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DataArray_t<real, 1, 15> CoordinateX =
{{
Data(real, 1, 15) = (x(i), i=1,15) ;
}} ;

DataArray_t<real, 1, 15> CoordinateY =
{{
Data(real, 1, 15) = (y(i), i=1,15) ;
}} ;

DataArray_t<real, 1, 15> CoordinateZ =
{{
Data(real, 1, 15) = (z(i), i=1,15) ;
}} ;

}} ;

7.3 Elements Structure Definition: Elements_t

The Elements_t data structure is required for unstructured zones, and contains the element con-
nectivity data, the element type, the element range, the parent elements data, and the number of
boundary elements.

Elements_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

Rind_t<IndexDimension> Rind ; (o/d)

IndexRange_t ElementRange ; (r)

int ElementSizeBoundary ; (o/d)

ElementType_t ElementType ; (r)

DataArray_t<int, 1, ElementDataSize> ElementConnectivity ; (r)

DataArray_t<int, 2, [ElementSize, 2]> ParentElements ; (o)
DataArray_t<int, 2, [ElementSize, 2]> ParentElementsPosition ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes
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1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users
may choose other legitimate names. Legitimate names must be unique within a given in-
stance of Elements_t and shall not include the names ElementConnectivity, ElementRange,
ParentElements, ParentElementsPosition or Rind.

2. IndexRange_t, ElementType_t, and ElementConnectivity_t are the required fields within
the Elements_t structure. Rind has a default if absent; the default is equivalent to having a
Rind structure whose RindPlanes array contains all zeros (see Section 4.8).

Rind is an optional field that indicates the number of rind elements included in the elements data.
If Rind is absent, then the DataArray_t structure entities contain only core elements of a zone. If
Rind is present, it will provide information on the number of rind elements, in addition to the core
elements, that are contained in the DataArray_t structures.

Note that the usage of rind data with respect to the size of the DataArray_t structures is differ-
ent under Elements_t than elsewhere. For example, when rind coordinate data is stored under
GridCoordinates_t, the parameter VertexSize accounts for the core data only. The size of the
DataArray_t structures containing the grid coordinates is determined by the DataSize function,
which adds the number of rind planes or points to VertexSize. But for the element connectivity,
the size of the DataArray_t structures containing the connectivity data is just ElementDataSize,
which depends on ElementSize, and includes both the core and rind elements.

ElementRange contains the index of the first and last elements defined in ElementConnectivity.
The elements are indexed with a global numbering system, starting at 1, for all element sections
under a given Zone_t data structure. The global numbering insures that each element, whether it’s
a cell, a face, or an edge, is uniquely identified by its number. They are also listed as a continuous
list of element numbers within any single element section. Therefore the number of elements in a
section is:

ElementSize = ElementRange.end - ElementRange.start + 1

The element indices are used for the boundary condition and zone connectivity definition.

ElementSizeBoundary indicates if the elements are sorted, and how many boundary elements are
recorded. By default, ElementSizeBoundary is set to zero, indicating that the elements are not
sorted. If the elements are sorted, ElementSizeBoundary is set to the number of elements at the
boundary. Consequently:

ElementSizeInterior = ElementSize - ElementSizeBoundary

ElementType_t is an enumeration of the supported element types:

ElementType_t := Enumeration(
Null, NODE, BAR_2, BAR_3,
TRI_3, TRI_6, QUAD_4, QUAD_8, QUAD_9,
TETRA_4, TETRA_10, PYRA_5, PYRA_14,
PENTA_6, PENTA_15, PENTA_18,
HEXA_8, HEXA_20, HEXA_27, MIXED, NGON_n, UserDefined );
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Section 3.3 illustrates the convention for element numbering.

For all element types except type MIXED, ElementConnectivity contains the list of nodes for each
element. If the elements are sorted, then it must first list the connectivity of the boundary elements,
then that of the interior elements.

ElementConnectivity = Node11, Node21, ... NodeN1,
Node12, Node22, ... NodeN2,
...
Node1M, Node2M, ... NodeNM

When the section ElementType is MIXED, the data array ElementConnectivity contains one extra
integer per element, to hold each individual element type:

ElementConnectivity = Etype1, Node11, Node21, ... NodeN1,
Etype2, Node12, Node22, ... NodeN2,
...
EtypeM, Node1M, Node2M, ... NodeNM

ElementDataSize indicates the size (number of integers) of the array ElementConnectivity. For
all element types except type MIXED, the ElementDataSize is given by:

ElementDataSize = ElementSize * NPE[ElementType]

In the case of MIXED element section, ElementDataSize is given by:

ElementDataSize =
end∑

n=start

(NPE[ElementTypen] + 1)

NPE[ElementType] is a function returning the number of nodes for the given ElementType. For
example, NPE[HEXA_8]=8.

For face elements in 3–D, or bar element in 2–D, additonal data may be provided for each element
in ParentElements and ParentElementsPosition. The element numbers of the two adjacent cells
for each face are given in ParentElements. The corresponding canonical positions of the face in the
two parent cells is given in ParentElementsPosition; these canonical face positions are defined in
Section 3.3. For faces on the boundary of the domain, the second parent is set to zero.

NGON_n is used to express a polygon of n nodes. In order to record the number of nodes of any
ngons, the ElementType must be set to NGON_n + Nnodes. For example, for an element type NGON_n
composed of 25 nodes, one would set the ElementType to NGON_n + 25.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.
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7.4 Elements Examples

This section contains two examples of elements definition in CGNS. In both cases, the unstructured
zone contains 15 tetrahedral and 10 hexahedral elements.

Example 7-D: Unstructured Elements, Separate Element Types

In this first example, the elements are written in two separate sections, one for the tetrahedral
elements and one for the hexahedral elements.

Zone_t UnstructuredZone =
{{
Elements_t TetraElements =
{{
IndexRange_t ElementRange = [1,15] ;

int ElementSizeBoundary = 10 ;

ElementType_t ElementType = TETRA_4 ;

DataArray_t<int, 1, NPE[TETRA_4]×15> ElementConnectivity =
{{
Data(int, 1, NPE[TETRA_4]×15) = (node(i,j), i=1,NPE[TETRA_4], j=1,15) ;
}} ;

}} ;
Elements_t HexaElements =
{{
IndexRange_t ElementRange = [16,25] ;

int ElementSizeBoundary = 0 ;

ElementType_t ElementType = HEXA_8 ;

DataArray_t<int, 1, NPE[HEXA_8]×10> ElementConnectivity =
{{
Data(int, 1, NPE[HEXA_8]×10) = (node(i,j), i=1,NPE[HEXA_8], j=1,10) ;
}} ;

}} ;
}} ;

Example 7-E: Unstructured Elements, Element Type MIXED

In this second example, the same unstructured zone described in Example 7-D is written in a single
element section of type MIXED (i.e., an unstructured grid composed of mixed elements).

Zone_t UnstructuredZone =
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{{
Elements_t MixedElementsSection =
{{
IndexRange_t ElementRange = [1,25] ;

ElementType_t ElementType = MIXED ;

DataArray_t<int, 1, ElementDataSize> ElementConnectivity =
{{
Data(int, 1, ElementDataSize) = (etype(j),(node(i,j),

i=1,NPE[etype(j)]), j=1,25) ;
}} ;

}} ;
}} ;

7.5 Axisymmetry Structure Definition: Axisymmetry_t

The Axisymmetry_t data structure allows recording the axis of rotation and the angle of rotation
around this axis for a two-dimensional dataset that represents an axisymmetric database.

Axisymmetry_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataArray_t<real,1,2> AxisymmetryReferencePoint ; (r)
DataArray_t<real,1,2> AxisymmetryAxisVector ; (r)
DataArray_t<real,1,1> AxisymmetryAngle ; (o)
DataArray_t<char,2,[32,2]> CoordinateNames ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
Axisymmetry_t and shall not include the names AxisymmetryAngle, AxisymmetryAxisVec-
tor, AxisymmetryReferencePoint, CoordinateNames, DataClass, or DimensionalUnits.

2. AxisymmetryReferencePoint and AxisymmetryAxisVector are the required fields within the
Axisymmetry_t structure.
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AxisymmetryReferencePoint specifies the origin used for defining the axis of rotation.

AxisymmetryAxisVector contains the direction cosines of the axis of rotation, through the Ax-
isymmetryReferencePoint. For example, for a 2-D dataset defined in the (x, y) plane, if Axisym-
metryReferencePoint contains (0, 0) and AxisymmetryAxisVector contains (1, 0), the x-axis is
the axis of rotation.

AxisymmetryAngle allows specification of the circumferential extent about the axis of rotation. If
this angle is undefined, it is assumed to be 360◦.

CoordinateNames may be used to specify the first and second coordinates used in the definition
of AxisymmetryReferencePoint and AxisymmetryAxisVector. If not found, it is assumed that
the first coordinate is CoordinateX and the second is CoordinateY. The coordinates given under
CoordinateNames, or implied by using the default, must correspond to those found under GridCo-
ordinates_t.

DataClass defines the default class for numerical data contained in the DataArray_t entities. For
dimensional data, DimensionalUnits may be used to describe the system of units employed. If
present, these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy, following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

7.6 Rotating Coordinates Structure Definition: RotatingCoordinates_t

The RotatingCoordinates_t data structure is used to record the rotation center and rotation rate
vector of a rotating coordinate system.

RotatingCoordinates_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

DataArray_t<real,1,PhysicalDimension> RotationCenter ; (r)
DataArray_t<real,1,PhysicalDimension> RotationRateVector ; (r)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
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of RotatingCoordinates_t and shall not include the names DataClass, DimensionalUnits,
RotationCenter, or RotationRateVector.

2. RotationCenter and RotationRateVector are the required fields within the RotatingCo-
ordinates_t structure.

RotationCenter specifies the coordinates of the center of rotation, and RotationRateVector spec-
ifies the components of the angular velocity of the grid about the center of rotation. Together, they
define the angular velocity vector. The direction of the angular velocity vector specifies the axis of
rotation, and its magnitude specifies the rate of rotation.

For example, for the common situation of rotation about the x-axis, RotationCenter would be
specified as any point on the x-axis, like (0, 0, 0). RotationRateVector would then be specified as
(ω,0,0), where ω is the rotation rate. Using the right-hand rule, ω would be positive for clockwise
rotation (looking in the +x direction), and negative for counter-clockwise rotation.

Note that for a rotating coordinate system, the axis of rotation is defined in the inertial frame
of reference, while the grid coordinates stored using the GridCoordinates_t data structure are
relative to the rotating frame of reference.

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present, these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy,
following the standard precedence rules.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

If rotating coordinates are used, it is useful to store variables relative to the rotating frame. Stan-
dardized data-name identifiers should be used for these variables, as defined for flow-solution quan-
tities in Appendix A.

7.7 Flow Solution Structure Definition: FlowSolution_t

The flow solution within a given zone is described by the FlowSolution_t structure. This structure
contains a list for the data arrays of the individual flow-solution variables, as well as identifying the
grid location of the solution. It also provides a mechanism for identifying rind-point data included
within the data arrays.

FlowSolution_t< int CellDimension, int IndexDimension,
int VertexSize[IndexDimension],
int CellSize[IndexDimension] > :=

{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

Rind_t<IndexDimension> Rind ; (o/d)
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IndexRange_t<IndexDimension> PointRange ; (o)
IndexArray_t<IndexDimension, ListLength[], int> PointList ; (o)

List( DataArray_t<DataType, IndexDimension, DataSize[]>
DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of FlowSolution_t and shall not include the names DataClass, Dimension-
alUnits, GridLocation, PointRange, PointList or Rind.

2. There are no required fields for FlowSolution_t. GridLocation has a default of Vertex if
absent. Rind also has a default if absent; the default is equivalent to having an instance of
Rind whose RindPlanes array contains all zeros (see Section 4.8).

3. Both of the fields PointRange and PointList are optional. Only one of these two fields may
be specified.

4. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t structure entities (see Section 5.1); DataType is real for all flow-solution identifiers
defined in Appendix A.

5. For unstructured zones GridLocation options are limited to Vertex or CellCenter, unless
one of PointRange or PointList is present.

6. Indexing of data within the DataArray_t structures, must be consistent with the associated
numbering of vertices or elements.

FlowSolution_t requires four structure parameters: CellDimension identifies the dimensionality
of cells or elements, IndexDimension identifies the dimensionality of the grid-size arrays, and
VertexSize and CellSize are the number of core vertices and cells, respectively, in each index
direction. For unstructured zones, IndexDimension is always 1.

The flow solution data is stored in the list of DataArray_t entities; each DataArray_t structure
entity may contain a single component of the solution vector. Standardized data-name identifiers
for the flow-solution quantities are described in Appendix A. The field GridLocation specifies the
location of the solution data with respect to the grid; if absent, the data is assumed to coincide with
grid vertices (i.e., GridLocation = Vertex). All data within a given instance of FlowSolution_t
must reside at the same grid location.

For structured grids, the value of GridLocation alone specifies the location and indexing of the
flow solution data. Vertices are explicity indexed. Cell centers and face centers are indexed using
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the minimum of the connecting vertex indices, as described in the section Structured Grid Notation
and Indexing Conventions (Section 3.2).

For unstructured grids, the value of GridLocation alone specifies location and indexing of flow
solution data only for vertex and cell-centered data. The reason for this is that element-based
grid connectivity provided in the Elements_t data structures explicitly indexes only vertices and
cells. For data stored at alternate grid locations (e.g. edges), additional connectivity information is
needed. This is provided by the optional fields PointRange and PointList; these refer to vertices,
edges, faces or cell centers, depending on the values of CellDimension and GridLocation. The
following table shows these relations.

CellDimension GridLocation
Vertex EdgeCenter *FaceCenter CellCenter

1 vertices − − cells (line elements)
2 vertices edges − cells (area elements)
3 vertices edges faces cells (volume elements)

In the table, *FaceCenter stands for the possible types: FaceCenter, IFaceCenter, JFaceCenter
or KFaceCenter.

Although intended for edge or face-based solution data for unstructured grids, the fields PointRange/List
may also be used to (redundantly) index vertex and cell-centered data. In all cases, indexing of flow
solution data corresponds to the element numbering as defined in the Elements_t data structures.

Rind is an optional field that indicates the number of rind planes (for structured grids) or rind points
or elements (for unstructured grids) included in the data. Its purpose and function are identical to
those described in Section 7.1. Note, however, that the Rind in this structure is independent of the
Rind contained in GridCoordinates_t. They are not required to contain the same number of rind
planes or elements. Also, the location of any flow-solution rind points is assumed to be consistent
with the location of the core flow solution points (e.g., if GridLocation = CellCenter, rind points
are assumed to be located at fictitious cell centers).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
flow solution data, DimensionalUnits may be used to describe the system of units employed. If
present these two entities take precedence over the corresponding entities at higher levels of the
CGNS hierarchy. The rules for determining precedence of entities of this type are discussed in
Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION ListLength[]:

return value: int
dependencies: PointRange, PointList
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FlowSolution_t requires the structure function ListLength, which is used to specify the number
of entities (e.g. vertices) corresponding to a given PointRange or PointList. If PointRange is
specified, then ListLength is obtained from the number of points (inclusive) between the beginning
and ending indices of PointRange. If PointList is specified, then ListLength is the number of
indices in the list of points. In this situation, ListLength becomes a user input along with the
indices of the list PointList. By “user”we mean the application code that is generating the CGNS
database.

FUNCTION DataSize[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize, CellSize, GridLocation, Rind, ListLength[]

The function DataSize[] is the size of flow solution data arrays. If Rind is absent then DataSize
represents only the core points; it will be the same as VertexSize or CellSize depending on
GridLocation. The definition of the function DataSize[] is as follows:

if (PointRange/PointList is present) then
{
DataSize[] = ListLength[] ;
}

else if (Rind is absent) then
{
if (GridLocation = Vertex) or (GridLocation is absent)
{
DataSize[] = VertexSize ;
}

else if (GridLocation = CellCenter) then
{
DataSize[] = CellSize ;
}

}
else if (Rind is present) then
{
if (GridLocation = Vertex) or (GridLocation is absent) then
{
DataSize[] = VertexSize + [a + b,...] ;
}

else if (GridLocation = CellCenter)
{
DataSize[] = CellSize + [a + b,...] ;
}

}
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where RindPlanes = [a,b,...] (see Section 4.8 for the definition of RindPlanes).

7.8 Flow Solution Example

This section contains an example of the flow solution entity, including the designation of grid
location and rind planes and data-normalization mechanisms.

Example 7-F: Flow Solution

Conservation-equation variables (ρ, ρu, ρv and ρe0) for a 2-D grid of size 11×5. The flowfield is cell-
centered with two planes of rind data. The density, momentum and stagnation energy (ρe0) data is
nondimensionalized with respect to a freestream reference state whose quantities are dimensional.
The freestream density and pressure are used for normalization; these values are 1.226 kg/m3 and
1.0132×105 N/m2 (standard atmosphere conditions). The data-name identifier conventions for the
conservation-equation variables are Density, MomentumX, MomentumY and EnergyStagnationDen-
sity.

! CellDimension = 2
! IndexDimension = 2
! VertexSize = [11,5]
! CellSize = [10,4]
FlowSolution_t<2, 2, [11,5], [10,4]> FlowExample =
{{
GridLocation_t GridLocation = CellCenter ;

Rind_t<2> Rind =
{{
int[4] RindPlanes = [2,2,2,2] ;
}} ;

DataClass_t DataClass = NormalizedByDimensional ;

DimensionalUnits_t DimensionalUnits =
{{
MassUnits = Kilogram ;
LengthUnits = Meter ;
TimeUnits = Second ;
TemperatureUnits = Null ;
AngleUnits = Null ;
}} ;

! DataType = real
! Dimension = 2
! DataSize = CellSize + [4,4] = [14,8]
DataArray_t<real, 2, [14,8]> Density =
{{
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Data(real, 2, [14,8]) = ((rho(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 1.226 ;
ConversionOffset = 0 ;
}} ;

DimensionalExponents_t DimensionalExponents =
{{
MassExponent = +1 ;
LengthExponent = -3 ;
TimeExponent = 0 ;
TemperatureExponent = 0 ;
AngleExponent = 0 ;
}} ;

}} ;

DataArray_t<real, 2, [14,8]> MomentumX =
{{
Data(real, 2, [14,8]) = ((rho_u(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 352.446 ;
ConversionOffset = 0 ;
}} ;

}} ;

DataArray_t<real, 2, [14,8]> MomentumY =
{{
Data(real, 2, [14,8]) = ((rho_v(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
{{
ConversionScale = 352.446 ;
ConversionOffset = 0 ;
}} ;

}} ;

DataArray_t<real, 2, [14,8]> EnergyStagnationDensity =
{{
Data(real, 2, [14,8]) = ((rho_e0(i,j), i=-1,12), j=-1,6) ;

DataConversion_t DataConversion =
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{{
ConversionScale = 1.0132e+05 ;
ConversionOffset = 0 ;
}} ;

}} ;
}} ;

The value of GridLocation indicates the data is at cell centers, and the value of RindPlanes
specifies two rind planes on each face of the zone. The resulting value of the structure function
DataSize is the number of cells plus four in each coordinate direction; this value is passed to each
of the DataArray_t entities.

Since the data are all nondimensional and normalized by dimensional reference quantities, this
information is stated in DataClass and DimensionalUnits at the FlowSolution_t level rather
than attaching the appropriate DataClass and DimensionalUnits to each DataArray_t entity. It
could possibly be at even higher levels in the heirarchy. The contents of DataConversion are in
each case the denominator of the normalization; this is ρ∞ for density,

√
p∞ρ∞ for momentum, and

p∞ for stagnation energy. The dimensional exponents are specified for density. For all the other
data, the dimensional exponents are to be inferred from the data-name identifiers.

Note that no information is provided to identify the actual reference state or indicate that it is
freestream. This information is not needed for data manipulations involving renormalization or
changing the units of the converted raw data.
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Note that there are no boundary-condition structures defined for abutting or overset interfaces,
unless they involve cases of symmetry or degeneracy. In other words, it is a CGNS design intent
that a given zone boundary segment or location should at most be defined (or covered) by either a
boundary condition or a multizone interface connectivity, but not by both. There is also no separate
boundary-condition structure for periodic boundary conditions (i.e., when a zone interfaces with
itself). Both of these situations are addressed by the interface connectivity data structures described
in Section 8.

In the sections to follow, the definitions of boundary-condition structures are first presented in
Section 9.1 through Section 9.6. Boundary-condition types are then discussed in detail in Section 9.7,
including a description of the boundary-condition equations to be enforced for each type; this sec-
tion also describes the distinction between boundary-condition types that impose a set of equations
regardless of local flow conditions and those that impose different sets of boundary-condition equa-
tions depending on the local flow solution. The rules for matching boundary-condition types and
the appropriate sets of boundary-condition equations are next discussed in Section 9.8. Details of
specifying data to be imposed in boundary-condition equations are provided in Section 9.9. Finally,
Section 9.10 presents several examples of boundary conditions.

9.1 Boundary Condition Structures Overview

Prior to presenting the detailed boundary condition structures, we give a brief overview of the
hierarchy used to describe boundary conditions.

Boundary conditions are classified as either fixed or flow-dependent. Fixed boundary conditions
enforce a given set of boundary-condition equations regardless of flow conditions; whereas, flow-
dependent boundary conditions enforce different sets of boundary-condition equations depending
on local flow conditions. We incorporate both fixed and flow-dependent boundary conditions into
a uniform framework. This allows all boundary conditions to be described in a similar manner.
We consider this functionally superior to separately treating fixed and flow-dependent boundary
conditions, even though the latter allows a simpler description mechanism for fixed boundary condi-
tions. The current organization also makes sense considering the fact that flow-dependent boundary
conditions are composed of multiple sets of fixed boundary conditions.

Figure 7 depicts the hierarchy used for prescribing a single boundary condition. Each boundary
condition includes a type that describes the general equations to enforce, a patch specification, and
a collection of data sets. The minimum required information for any boundary condition is the
patch specification and the boundary-condition type (indicated by “BC type (compound)” in the
figure). This minimum information is similar to that used in many existing flow solvers.

Generality in prescribing equations to enforce and their associated boundary-condition data is
provided in the optional data sets. Each data set contains all boundary condition data required
for a given fixed or simple boundary condition. Each data set is also tagged with a boundary-
condition type. For fixed boundary conditions, the hierarchical tree contains a single data set, and
the two boundary-condition types shown in Figure 7 are identical. Flow-dependent or compound
boundary conditions contain multiple data sets, each to be applied separately depending on local
flow conditions. The compound boundary-condition type describes the general flow-dependent
boundary conditions, and each data set contains associated simple boundary-condition types. For
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Figure 7: Hierarchy for Boundary Condition Structures

example, a farfield boundary condition would contain four data sets, where each applies to the
different combinations of subsonic and supersonic inflow and outflow. Boundary-condition types
are described in Section 9.7 and Section 9.8.

Within a single data set, boundary condition data is grouped by equation type into Dirichlet and
Neumann data. The lower leaves of Figure 7 show data for generic flow-solution quantities α and
β to be applied in Dirichlet conditions, and data for γ and δ to be applied in Neumann boundary
conditions. DataArray_t entities are employed to store these data and to identify the specific flow
variables they are associated with.

In situations where the data sets (or any information contained therein) are absent from a given
boundary-condition hierarchy, flow solvers are free to impose any appropriate boundary conditions.
Although not pictured in Figure 7, it is also possible to specify the reference state from which the
flow solver should extract the boundary-condition data.

9.2 Zonal Boundary Condition Structure Definition: ZoneBC_t

All boundary-condition information pertaining to a given zone is contained in the ZoneBC_t struc-
ture.

ZoneBC_t< int CellDimension, int IndexDimension, int PhysicalDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

List( BC_t<CellDimension, IndexDimension, int PhysicalDimension>
BC1 ... BCN ) ; (o)
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ReferenceState_t ReferenceState ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, BC_t, and UserDefinedData_t lists are as shown;
users may choose other legitimate names. Legitimate names must be unique within a given
instance of ZoneBC_t and shall not include the names DataClass, DimensionalUnits, or
ReferenceState.

2. All lists within a ZoneBC_t structure entity may be empty.

ZoneBC_t requires three structure parameters, CellDimension, IndexDimension and PhysicalDimen-
sion, which are passed onto all BC_t substructures.

Boundary-condition information for a single patch is contained in the BC_t structure. All boundary-
condition information pertaining to a given zone is contained in the list of BC_t structure entities.
If a zone contains N boundary-condition patches, then N (and only N) separate instances of BC_t
must be provided in the ZoneBC_t entity for the zone. That is, each boundary-condition patch
must be represented by a single BC_t entity.

Reference data applicable to all boundary conditions of a zone is contained in the ReferenceState
structure. DataClass defines the zonal default for the class of data contained in the boundary
conditions of a zone. If the boundary conditions contain dimensional data, DimensionalUnits
may be used to describe the system of dimensional units employed. If present, these three entities
take precedence of all corresponding entities at higher levels of the hierarchy. These precedence
rules are further discussed in Section 6.4.

Reference-state data is useful for situations where boundary-condition data is not provided, and
flow solvers are free to enforce any appropriate boundary condition equations. The presense of
ReferenceState at this level or below specifies the appropriate flow conditions from which the
flow solver should extract its boundary-condition data. For example, when computing an external
flowfield around an airplane, an engine nozzle exit is often simulated by imposing a stagnation
pressure boundary condition (or some other stagnation quantity) different from freestream. The
nozzle-exit stagnation quantities could be specified in an instance of ReferenceState at this level
or below in lieu of providing explicit Dirichlet or Neumann data (see Section 9.9).

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.
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9.3 Boundary Condition Structure Definition: BC_t

BC_t contains boundary-condition information for a single BC surface patch of a zone. A BC patch
is the subrange of the face of a zone where a given boundary condition is applied.

The structure contains a boundary-condition type, as well as one or more sets of boundary-condition
data that are used to define the boundary-condition equations to be enforced on the BC patch.
For most boundary conditions, a single data set is all that is needed. The structure also contains
information describing the normal vector to the BC surface patch.

BC_t< int CellDimension, int IndexDimension, int PhysicalDimension > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

BCType_t BCType ; (r)

GridLocation_t GridLocation ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (r:o)
IndexArray_t<IndexDimension, ListLength[], int> PointList ; (o:r)

int[IndexDimension] InwardNormalIndex ; (o)

IndexArray_t<PhysicalDimension, ListLength[], real> InwardNormalList ; (o)

List( BCDataSet_t<CellDimension, IndexDimension, ListLength[], GridLocation>
BCDataSet1 ... BCDataSetN ) ; (o)

BCProperty_t BCProperty ; (o)

FamilyName_t FamilyName ; (o)

ReferenceState_t ReferenceState ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t, BCDataSet_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
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a given instance of BC_t and shall not include the names BCProperty, BCType, DataClass,
DimensionalUnits, FamilyName, GridLocation, InwardNormalIndex, InwardNormalList,
Ordinal, PointList, PointRange or ReferenceState.

2. GridLocation is optional; if absent its default value is Vertex. For 2–D grids (CellDimension
= 2), GridLocation may take the additional value of EdgeCenter. For 3–D grids (CellDimension
= 3), GridLocation may take the additional values of EdgeCenter, FaceCenter, IFaceCen-
ter, JFaceCenter or KFaceCenter.

3. One of PointRange or PointList must be specified but not both. They must define a face
subrange of the zone.

4. InwardNormalIndex is only an option for structured grids. For unstructured grid boundaries,
it should not be used. InwardNormalIndex may have only one nonzero element, whose sign
indicates the computational-coordinate direction of the BC patch normal; this normal points
into the interior of the zone.

5. InwardNormalList contains a list of vectors normal to the BC patch pointing into the interior
of the zone. It is a function of PhysicalDimension and ListLength[]. The vectors are
located at the vertices of the BC patch when GridLocation is set to Vertex. Otherwise, they
are located at edge/face midpoints. The vectors are not required to have unit magnitude.

6. If PointRange and InwardNormalList are specified, an ordering convention is needed for
indices on the BC patch. An ordering convention is also needed if a range is specified and
local data is present in the BCDataSet_t substructures. FORTRAN multidimensional array
ordering is used.

BCType specifies the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced. BCType_t is defined in Section 9.7 along with the meanings of
all the BCType values.

The BC patch may be specified by PointRange if it constitutes a logically rectangular region. In
all other cases, PointList should be used to list the vertices or cell edges/faces making up the
BC patch. When GridLocation is set to Vertex, then PointList or PointRange refer to vertex
indices, for both structured and unstructured grids. When GridLocation is set to EdgeCenter,
then PointRange/List refer to edge elements. For 3–D grids, when GridLocation is set to Face-
Center, IFaceCenter, etc., then PointRange/List refer to face elements. The interpretation of
PointRange/List is summarized in the table below:

CellDimension GridLocation
Vertex EdgeCenter *FaceCenter

1 vertices − −
2 vertices edges −
3 vertices edges faces

In the table, *FaceCenter stands for the possible types: FaceCenter, IFaceCenter, JFaceCenter
or KFaceCenter.

For structured grids, face centers are indexed using the minimum of the connecting vertex indices,
as described in Section 3.2. For unstructured grids, edge and face elements are indexed using their
element numbering as defined in the Elements_t data structures.
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The BC patch defined by PointRange/List is a surface region over which the particular set of
boundary conditions is applied. However, in the current standard there is no mechanism to specify
whether boundary conditions are enforced in the weak or strong form. If boundary conditions are
imposed using collocation (i.e., strong form), there is also no requirement that they be imposed
at the same locations used to define the BC patch (via PointRange/List). In the case when BC
patches are defined in terms of vertices (or edges in 3–D), then the bounding vertices will be located
on multiple BC patches. If boundary conditions are imposed using collocation at vertices, then for
this case there is no mechanism to determine which BC patch takes precedence for any of these
bounding vertices.

Some boundary conditions require a normal direction to be specified in order to be properly imposed.
For structured zones a computational-coordinate normal can be derived from the BC patch specifi-
cation by examining redundant index components. Alternatively, for structured zones this informa-
tion can be provided directly by InwardNormalIndex. From Note 4, this vector points into the zone
and can have only one non-zero element. For exterior faces of a zone in 3-D, InwardNormalIndex
should take the following values:

Face InwardNormalIndex Face InwardNormalIndex

i-min [+1, 0, 0] i-max [−1, 0, 0]
j-min [0,+1, 0] j-max [0,−1, 0]
k-min [0, 0,+1] k-max [0, 0,−1]

The physical-space normal vectors of the BC patch may be described by InwardNormalList; these
are located at vertices or cell faces, consistent with the BC patch specification. InwardNormalList
is listed as an optional field because it is not always needed to enforce boundary conditions, and
the physical-space normals of a BC patch can usually be constructed from the grid. However, there
are some situations, such as grid-coordinate singularity lines, where InwardNormalList becomes a
required field, because it cannot be generated from other information.

The BC_t structure provides for a list of boundary-condition data sets, described in the next section.
In general, the proper BCDataSet_t instance to impose on the BC patch is determined by the BCType
association table (Table 4 on p. 117). The mechanics of determining the proper data set to impose
is described in Section 9.8.

For a few boundary conditions, such as a symmetry plane or polar singularity, the value of BCType
completely describes the equations to impose, and no instances of BCDataSet_t are needed. For
“simple” boundary conditions, where a single set of Dirichlet and/or Neumann data is applied,
a single BCDataSet_t will likely appear (although this is not a requirement). For “compound”
boundary conditions, where the equations to impose are dependent on local flow conditions, several
instances of BCDataSet_t will likely appear; the procedure for choosing the proper data set is more
complex as described in Section 9.8.

A BCProperty_t data structure, described in Section 9.6, may be used to record special properties
associated with particular boundary condition patches, such as wall functions or bleed regions.

FamilyName identifies the family to which the boundary belongs. Family names link the mesh
boundaries to the CAD surfaces. (See Section 12.6.) Boundary conditions may also be defined
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directly on families. In this case, the BCType must be FamilySpecified. If, under a BC_t structure,
both FamilyName_t and BCType_t are present, and the BCType is not FamilySpecified, then the
BCType which is specified takes precedence over any BCType which might be stored in a FamilyBC_t
structure under the specified Family_t.

Reference data applicable to the boundary conditions of a BC patch is contained in the Refer-
enceState structure. DataClass defines the default for the class of data contained in the boundary
conditions. If the boundary conditions contain dimensional data, DimensionalUnits may be used
to describe the system of dimensional units employed. If present, these three entities take prece-
dence of all corresponding entities at higher levels of the hierarchy. These precedence rules are
further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

Ordinal is user-defined and has no restrictions on the values that it can contain. It is included
for backward compatibility to assist implementation of the CGNS system into applications whose
I/O depends heavily on the numbering of BC patches. Since there are no restrictions on the values
contained in Ordinal (or that Ordinal is even provided), there is no guarantee that the BC patches
for a given zone in an existing CGNS database will have sequential values from 1 to N without
holes or repetitions. Use of Ordinal is discouraged and is on a user-beware basis.

FUNCTION ListLength[]:

return value: int
dependencies: PointRange, PointList

BC_t requires the structure function ListLength, which is used to specify the number of vertices
or edge/face elements making up the BC patch. If PointRange is specified, then ListLength
is obtained from the number of points (inclusive) between the beginning and ending indices of
PointRange. If PointList is specified, then ListLength is the number of indices in the list of
points. In this situation, ListLength becomes a user input along with the indices of the list
PointList. By “user” we mean the application code that is generating the CGNS database.

ListLength is also the number of elements in the list InwardNormalList. Note that syntactically
PointList and InwardNormalList must have the same number of elements.

If neither PointRange or PointList is specified in a particular BCDataSet_t substructure, List-
Length must be passed into it to determine the length of BC data arrays.

9.4 Boundary Condition Data Set Structure Definition: BCDataSet_t

BCDataSet_t contains Dirichlet and Neumann data for a single set of boundary-condition equations.
Its intended use is for simple boundary-condition types, where the equations imposed do not depend
on local flow conditions.

BCDataSet_t< int CellDimension, int IndexDimension, int ListLengthParameter,
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GridLocation_t GridLocationParameter > :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

BCTypeSimple_t BCTypeSimple ; (r)

BCData_t<ListLengthBCData[]> DirichletData ; (o)
BCData_t<ListLengthBCData[]> NeumannData ; (o)

GridLocation_t GridLocation ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (o)
IndexArray_t<IndexDimension, ListLength[], int> PointList ; (o)

ReferenceState_t ReferenceState ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance of
BCDataSet_t and shall not include the names BCTypeSimple, DataClass, DimensionalUnits,
DirichletData, GridLocation, NeumannData, PointList, PointRange, or ReferenceState.

2. BCTypeSimple is the only required field. All other fields are optional and the Descriptor_t
list may be empty.

3. GridLocation is optional; if absent its default value is GridLocationParameter. For 2–D
grids (CellDimension = 2), GridLocation may take the values of Vertex or EdgeCenter. For
3–D grids (CellDimension = 3), GridLocation may take the values of Vertex, EdgeCenter,
FaceCenter, IFaceCenter, JFaceCenter or KFaceCenter.

4. PointRange and PointList are both optional; only one of them may be specified. They must
define a face subrange of the zone.

BCDataSet_t requires the structure parameters CellDimension, IndexDimension, ListLengthPa-
rameter and GridLocationParameter. These are all used to control the grid location and length
of data arrays in the Dirichlet and Neumann substructures. They are inputs for the structure
functions ListLength[] and ListLengthBCData[] defined below.

BCTypeSimple specifies the boundary-condition type, which gives general information on the bound-
ary-condition equations to be enforced. BCTypeSimple_t is defined in Section 9.7 along with the
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meanings of all the BCTypeSimple values. BCTypeSimple is also used for matching boundary
condition data sets as discussed in Section 9.8.

Boundary-condition data is separated by equation type into Dirichlet and Neumann conditions.
Dirichlet boundary conditions impose the value of the given variables, whereas Neumann boundary
conditions impose the normal derivative of the given variables. The mechanics of specifying Dirichlet
and Neumann data for boundary conditions is covered in Section 9.9.

The substructures DirichletData and NeumannData contain boundary-condition data which may
be constant over the BC patch or defined locally at each vertex or edge/face of the patch. Locally
defined data can be specified in one of two ways. If GridLocation, PointRange and PointList are
all absent, then the data is defined consistent with the BC patch specification of the parent BC_t
structure. In this case, the location of the locally defined data is given by GridLocationParameter
and the length of the data arrays are given by ListLengthParameter. If GridLocation and one
of PointRange or PointList is present, then the same rules provided in Section Section 9.3 apply.
In this case, the length of the data arrays is given by ListLength[].

Reference quantities applicable to the set of boundary-condition data are contained in the Refer-
enceState structure. DataClass defines the default for the class of data contained in the boundary-
condition data. If the boundary conditions contain dimensional data, DimensionalUnits may be
used to describe the system of dimensional units employed. If present, these three entities take
precedence of all corresponding entities at higher levels of the hierarchy. These precedence rules
are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION ListLength[]:

return value: int
dependencies: PointRange, PointList

BCDataSet_t requires the structure function ListLength, which is used to specify the length of
locally defined Dirichlet and Neumann data arrays when the grid location of these quatities differs
from that of the BC patch definition. The definition of ListLength is identical to that provided in
BC_t (Section 9.3).

FUNCTION ListLengthBCData[]:

return value: int
dependencies: ListLengthParameter, PointRange, PointList

BCDataSet_t also requires the structure function ListLengthBCData. If PointRange or PointList
is present, then ListLengthBCData takes the value of ListLength. If both are absent, then it takes
the value ListLengthParameter.

108



9 Boundary Conditions

This example raises the question of whether unused structure parameters are required in structure
entities. The answer is no. We included them here for completeness. The purpose of structure
parameters is to mimic the need to define elements of a entity based on information contained
elsewhere (at a higher level) in the CGNS database. When this need is not present in a given
instance of a structure entity, the structure parameters are superfluous. In some of the following
examples, structure parameters that are superfluous or otherwise not needed are denoted by “?”.

Example 9-C: Subsonic Inflow

Subsonic inflow for a 2-D structured zone: The BC patch is on the i-min face and includes j ∈ [2, 7].
As prescribed by the boundary-condition type, three quantities must be specified. Uniform entropy
and stagnation enthalpy are specified with values of 0.94 and 2.85, respectively. A velocity profile
is specified at face midpoints, given by the array v_inflow(j). No dimensional or nondimensional
information is provided.

! CellDimension = 2, IndexDimension = 2
BC_t<2,2,?> BC3 =
{{
BCType_t BCType = BCInflowSubsonic ;

GridLocation_t GridLocation = FaceCenter ;

IndexRange_t<2> PointRange =
{{
int[2] Begin = [1,2] ;
int[2] End = [1,6] ;
}} ;

! ListLength = 5
BCDataSet_t<5> BCDataSet1 =
{{
BCTypeSimple_t BCTypeSimple = BCInflowSubsonic ;

! Data array length = ListLength = 5
BCData_t<5> DirichletData =
{{
DataArray_t<real, 1, 1> EntropyApprox =
{{
Data(real, 1, 1) = 0.94 ;
}} ;

DataArray_t<real, 1, 1> EnthalpyStagnation =
{{
Data(real, 1, 1) = 2.85 ;
}} ;
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DataArray_t<real, 1, 5> VelocityY =
{{
Data(real, 1, 5) = (v_inflow(j), j=3,7) ;
}} ;

}} ;
}} ;

}} ;

This is another example of a simple boundary-condition type. The primary additional complexity
included in this example is multiple Dirichlet conditions with one containing local data. Dirich-
letData contains three DataArray_t entities named EntropyApprox, EnthalpyStagnation and
VelocityY. This specifies three Dirichlet boundary conditions to be enforced, and the names iden-
tify the solution quantities to set. Since both EntropyApprox and EnthalpyStagnation have an
array-length structure parameter of one, they identify global data, and the values are provided.
VelocityY is an array of data values and contains the values in v_inflow(). The length of the
array is given by ListLength, which represents the number of cell faces because BC3 is specified
using the value of FaceCenter for GridLocation. Note that the beginning and ending indices on
the array v_inflow() are unimportant (they are user inputs); there just needs to be five values
provided.

Example 9-D: Outflow

Outflow boundary condition with unspecified normal Mach number for an i-max face of a 3-D
structured zone: for subsonic outflow, a uniform pressure is specified; for supersonic outflow, no
boundary-condition equations are specified.

! CellDimension = 3, IndexDimension = 3
BC_t<3,3,3> BC4 =
{{
BCType_t BCType = BCOutflow ;

IndexRange_t<3> PointRange = {{ }} ;

BCDataSet_t<?> BCDataSetSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSubsonic ;

BCData_t<?> DirichletData =
{{
DataArray_t<real, 1, 1> Pressure = {{ }} ;
}} ;

}} ;

BCDataSet_t<?> BCDataSetSupersonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSupersonic ;
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}} ;
}} ;

This is an example of a complex boundary-condition type; the equation set to be enforced depends
on the local flow conditions, namely the Mach number normal to the boundary. Two data sets
are provided, BCDataSetSubsonic and BCDataSetSupersonic; recall the names are unimportant
and are user defined. The first data set has a boundary-condition type of BCOutflowSubsonic
and prescribes a global Dirichlet condition on static pressure. Any additional boundary condi-
tions needed may be applied by a flow solver. The second data set has a boundary-condition
type of BCOutflowSupersonic with no additional boundary-condition equation specification. Typ-
ically, all solution quantities are extrapolated from the interior for supersonic outflow. From
the boundary-condition type association table (Table 4), BCOutflow requires two data sets with
boundary-condition types BCOutflowSubsonic and BCOutflowSupersonic. The accompanying us-
age rule states that the data set for BCOutflowSubsonic should be used for a subsonic normal
Mach number; otherwise, the data set for BCOutflowSupersonic should be enforced.

Any additional data sets with boundary-condition types other than BCOutflowSubsonic or BCOut-
flowSupersonic could be provided (the definition of BC_t allows an arbitrary list of BCDataSet_t
entities); however, they should be ignored by any code processing the boundary-condition infor-
mation. Another caveat is that providing two data sets with the same simple boundary-condition
type would cause indeterminate results — which one is the correct data set to apply?

The actual global data value for static pressure is not provided; an abbreviated form of the Pressure
entity is shown. This example also uses the “?” notation for unused data-array-length structure
parameters.

Example 9-E: Farfield

Farfield boundary condition with arbitrary flow conditions for a j-max face of a 2-D structured zone:
If subsonic inflow, specify entropy, vorticity and incoming acoustic characteristics; if supersonic
inflow specify entire flow state; if subsonic outflow, specify incoming acoustic characteristic; and
if supersonic outflow, extrapolate all flow quantities. None of the extrapolated quantities for the
different boundary condition possibilities need be stated.

! CellDimension = 2, IndexDimension = 2
BC_t<2,2,2> BC5 =
{{
BCType_t BCType = BCFarfield ;

IndexRange_t<2> PointRange = {{ }} ;

int[2] InwardNormalIndex = [0,-1] ;

BCDataSet_t<?> BCDataSetInflowSupersonic =
{{
BCTypeSimple_t BCTypeSimple = BCInflowSupersonic ;
}} ;
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BCDataSet_t<?> BCDataSetInflowSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCInflowSubsonic ;

BCData<?> DirichletData =
{{
DataArray_t<real, 1, 1> CharacteristicEntropy = {{ }} ;
DataArray_t<real, 1, 1> CharacteristicVorticity1 = {{ }} ;
DataArray_t<real, 1, 1> CharacteristicAcousticPlus = {{ }} ;
}} ;

}} ;

BCDataSet_t<?> BCDataSetOutflowSupersonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSupersonic ;
}} ;

BCDataSet_t<?> BCDataSetOutflowSubsonic =
{{
BCTypeSimple_t BCTypeSimple = BCOutflowSubsonic ;

BCData<?> DirichletData =
{{
DataArray_t<real, 1, 1> CharacteristicAcousticMinus = {{ }} ;
}} ;

}} ;
}} ;

The farfield boundary-condition type is the most complex of the compound boundary-condition
types. BCFarfield requires four data sets; these data sets must contain the simple boundary-
condition types BCInflowSupersonic, BCInflowSubsonic, BCOutflowSupersonic and BCOutflow-
Subsonic. This example provides four appropriate data sets. The usage rule given for BCFarfield
in Table 4 states which set of boundary-condition equations to be enforced based on the normal
velocity and normal Mach number.

The data set for supersonic-inflow provides no information other than the boundary-condition type.
A flow solver is free to apply any conditions that are appropriate; typically all solution quantities are
set to freestream reference state values. The data set for subsonic-inflow states that three Dirichlet
conditions should be enforced; the three data identifiers provided are among the list of conventions
given in Appendix A.5. The data set for supersonic-outflow only provides the boundary-condition
type, and the data set for subsonic-outflow provides one Dirichlet condition on the incoming acoustic
characteristic, CharacteristicAcousticMinus.

Also provided in the example is the inward-pointing computational-coordinate normal; the normal
points in the −j direction, meaning the BC patch is a j-max face. This information could also be
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obtained from the BC patch description given in IndexRange.

Note that this example shows only the overall layout of the boundary-condition entity. IndexRange
and all DataArray_t entities are abbreviated, and all unused structure functions are not evaluated.
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Example 9-F: Viscous Solid Wall II

There are circumstances when a user may wish to define a BC patch using vertices (under BC_t),
but store the BC data at face centers (under BCDataSet_t). The following example is similar to
Example 9-B, with the exception that the Dirichlet data for temperature is stored at face centers
rather than at vertices.

As before, the example is a viscous solid wall in a 3-D structured zone, where a Dirichlet condition
is enforced for temperature; the wall temperature for the entire wall is specified to be 273 K. The
BC patch is on the j-min face and is bounded by the indices (1,1,1) and (33,1,9).

! CellDimension = 3, IndexDimension = 3
BC_t<3,3,3> BC2 =
{{
BCType_t BCType = BCWallViscousIsothermal ;

! Grid location is Vertex by default
IndexRange_t<3> PointRange =
{{
int[3] Begin = [1 ,1,1] ;
int[3] End = [33,1,9] ;
}} ;

! ListLength = 33*9 = 297
BCDataSet_t<297> BCDataSet1 =
{{
BCTypeSimple_t BCTypeSimple = BCWallViscousIsothermal ;

GridLocation_t GridLocation = FaceCenter ;
IndexRange_t<3> PointRange =

int[3] Begin = [1 ,1,1] ;
int[3] End = [32,1,8] ;
;

! ListLength = 32*8 = 256
BCData_t<256> DirichletData =
{{
DataArray_t<real, 1, 1> Temperature =
{{
Data(real, 1, 1) = 273. ;

DataClass_t DataClass = Dimensional ;

DimensionalUnits_t DimensionalUnits =
{{
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MassUnits = Null ;
LengthUnits = Null ;
TimeUnits = Null ;
TemperatureUnits = Kelvin ;
AngleUnits = Null ;
}} ;

}} ;
}} ;

}} ;
}} ;

As in Example 9-B, although the boundary-condition data is global, we include in this example
structure parameters that are the lengths of potential local-data arrays. In BC_t, GridLocation is
not specified, and thus is Vertex by default. The structure function ListLength is 297, based on
the specification of PointRange, and that value is passed to BCDataSet_t.

In this example PointRange is specified in BCDataSet_t, so the ListLength passed into it from
BC_t is not used. In BCDataSet_t, GridLocation is specified as FaceCenter, and PointRange is
set accordingly. The corresponding value of ListLength is 256, which is passed into BCData_t.

As before, in BCData_t the entity Temperature contains global data, so the value of ListLength
is unused.
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NormDefinitions be utilized to describe the convergence information recorded in the data arrays.
The format used to describe the convergence norms in NormDefinitions is currently unregulated.

12.4 Discrete Data Structure Definition: DiscreteData_t

DiscreteData_t provides a description of generic discrete data (i.e., data defined on a computa-
tional grid); it is identical to FlowSolution_t except for its type name. This structure can be used
to store field data, such as fluxes or equation residuals, that is not typically considered part of the
flow solution. DiscreteData_t contains a list for data arrays, identification of grid location, and a
mechanism for identifying rind-point data included in the data arrays. All data contained within
this structure must be defined at the same grid location and have the same amount of rind-point
data.

DiscreteData_t< int CellDimension, int IndexDimension, int VertexSize[IndexDimension],
int CellSize[IndexDimension] > :=

{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

Rind_t<IndexDimension> Rind ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (o)
IndexArray_t<IndexDimension, ListLength[], int> PointList ; (o)

List( DataArray_t<DataType, IndexDimension, DataSize[]>
DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within a
given instance of DiscreteData_t and shall not include the names DataClass, Dimension-
alUnits, GridLocation, PointRange, PointList or Rind.

2. There are no required fields for DiscreteData_t. GridLocation has a default of Vertex if
absent. Rind also has a default if absent; the default is equivalent to having an instance of
Rind whose RindPlanes array contains all zeros (see Section 4.8).
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3. Both of the fields PointRange and PointList are optional. Only one of these two fields may
be specified.

4. The structure parameter DataType must be consistent with the data stored in the DataAr-
ray_t entities (see Section 5.1).

5. For unstructured zones GridLocation options are limited to Vertex or CellCenter, unless
one of PointRange or PointList is present.

6. Indexing of data within the DataArray_t structures, must be consistent with the associated
numbering of vertices or elements.

DiscreteData_t requires four structure parameters: CellDimension identifies the dimensionality
of cells or elements, IndexDimension identifies the dimensionality of the grid size arrays, and
VertexSize and CellSize are the number of core vertices and cells, respectively, in each index
direction. For unstructured zones, IndexDimension is always 1.

The arrays of discrete data are stored in the list of DataArray_t entities. The field GridLocation
specifies the location of the data with respect to the grid; if absent, the data is assumed to
coincide with grid vertices (i.e., GridLocation = Vertex). All data within a given instance of
DiscreteData_t must reside at the same grid location.

For structured grids, the value of GridLocation alone specifies the location and indexing of the
discrete data. Vertices are explicity indexed. Cell centers and face centers are indexed using the
minimum of the connecting vertex indices, as described in the section Structured Grid Notation
and Indexing Conventions (Section 3.2).

For unstructured grids, the value of GridLocation alone specifies location and indexing of discrete
data only for vertex and cell-centered data. The reason for this is that element-based grid connec-
tivity provided in the Elements_t data structures explicitly indexes only vertices and cells. For
data stored at alternate grid locations (e.g. edges), additional connectivity information is needed.
This is provided by the optional fields PointRange and PointList; these refer to vertices, edges,
faces or cell centers, depending on the values of CellDimension and GridLocation. The following
table shows these relations.

CellDimension GridLocation
Vertex EdgeCenter *FaceCenter CellCenter

1 vertices − − cells (line elements)
2 vertices edges − cells (area elements)
3 vertices edges faces cells (volume elements)

In the table, *FaceCenter stands for the possible types: FaceCenter, IFaceCenter, JFaceCenter
or KFaceCenter.

Although intended for edge or face-based discrete data for unstructured grids, the fields PointRange/List
may also be used to (redundantly) index vertex and cell-centered data. In all cases, indexing of
discrete data corresponds to the element numbering as defined in the Elements_t data structures.

Rind is an optional field that indicates the number of rind planes (for structured grids) or rind points
or elements (for unstructured grids) included in the data. Its purpose and function are identical to
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those described in Section 7.1. Note, however, that the Rind in this structure is independent of the
Rind contained in GridCoordinates_t. They are not required to contain the same number of rind
planes or elements. Also, the location of any discrete-data rind points is assumed to be consistent
with the location of the core points (e.g., if GridLocation = CellCenter, rind points are assumed
to be located at fictitious cell centers).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy.
The rules for determining precedence of entities of this type are discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

FUNCTION ListLength[]:

return value: int
dependencies: PointRange, PointList

DiscreteData_t requires the structure function ListLength, which is used to specify the number
of entities (e.g. vertices) corresponding to a given PointRange or PointList. If PointRange is
specified, then ListLength is obtained from the number of points (inclusive) between the beginning
and ending indices of PointRange. If PointList is specified, then ListLength is the number of
indices in the list of points. In this situation, ListLength becomes a user input along with the
indices of the list PointList. By “user”we mean the application code that is generating the CGNS
database.

FUNCTION DataSize[]:

return value: one-dimensional int array of length IndexDimension
dependencies: IndexDimension, VertexSize[], CellSize[], GridLocation, Rind, ListLength[]

The function DataSize[] is the size of discrete-data arrays. It is identical to the function Data-
Size[] defined for FlowSolution_t (see Section 7.7).

12.5 Integral Data Structure Definition: IntegralData_t

IntegralData_t provides a description of generic global or integral data that may be associated
with a particular zone or an entire database. In contrast to DiscreteData_t, integral data is not
associated with any specific field location.

IntegralData_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)
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List( DataArray_t<DataType, 1, 1> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of DiscreteData_t and shall not include the names DataClass or Dimen-
sionalUnits.

2. There are no required fields for IntegralData_t.
3. The structure parameter DataType must be consistent with the data stored in the DataAr-

ray_t entities (see Section 5.1).

DataClass defines the default class for data contained in the DataArray_t entities. For dimensional
data, DimensionalUnits may be used to describe the system of units employed. If present these
two entities take precedence over the corresponding entities at higher levels of the CGNS hierarchy.
The rules for determining precedence of entities of this type are discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

12.6 Family Data Structure Definition: Family_t

Geometric associations need to be set through one layer of indirection. That is, rather than setting
the geometry data for each mesh entity (nodes, edges, and faces), they are associated to intermediate
objects. The intermediate objects are in turn linked to nodal regions of the computational mesh.
We define a CFD family as this intermediate object. This layer of indirection is necessary since
there is rarely a 1-to-1 connection between mesh regions and geometric entities.

The Family_t data structure holds the CFD family data. Each mesh surface is linked to the
geometric entities of the CAD databases by a name attribute. This attribute corresponds to a
family of CAD geometric entities on which the mesh face is projected. Each one of these geometric
entities is described in a CAD file and is not redefined within the CGNS file. A Family_t data
structure may be included in the CGNSBase_t structure for each CFD family of the model.

The Family_t structure contains all information pertinent to a CFD family. This information
includes the name attribute or family name, the boundary conditions applicable to these mesh
regions, and the referencing to the CAD databases.

Family_t :=
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{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

FamilyBC_t FamilyBC ; (o)

List( GeometryReference_t GeometryReference1 ... GeometryReferenceN ) ; (o)

RotatingCoordinates_t RotatingCoordinates ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. All data structures contained in Family_t are optional.
2. Default names for the Descriptor_t, GeometryReference_t, and UserDefinedData_t lists

are as shown; users may choose other legitimate names. Legitimate names must be unique at
this level and must not include the names FamilyBC, Ordinal, or RotatingCoordinates.

3. The CAD referencing data are written in the GeometryReference_t data structures. They
identify the CAD systems and databases where the geometric definition of the family is stored.

4. The boundary condition type pertaining to a family is contained in the data structure Fam-
ilyBC_t. If this boundary condition type is to be used, the BCType specified under BC_t must
be FamilySpecified.

5. For the purpose of defining zone properties, families are extended to a volume of cells. In
such case, the GeometryReference_t structures are not used.

6. The mesh is linked to the family by attributing a family name to a BC patch or a zone in the
data structure BC_t or Zone_t, respectively.

7. Ordinal is defined in the SIDS as a user-defined integer with no restrictions on the values
that it can contain. It may be used here to attribute a number to the family.

Rotation of the CFD family may be defined using the RotatingCoordinates_t data structure.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.

12.7 Geometry Reference Structure Definition: GeometryReference_t

The standard interface data structure identifies the CAD systems used to generate the geometry, the
CAD files where the geometry is stored, and the geometric entities corresponding to the family. The
GeometryReference_t structures contain all the information necessary to associate a CFD family
to the CAD databases. For each GeometryReference_t structure, the CAD format is recorded in
GeometryFormat, and the CAD file in GeometryFile. The geometry entity or entities within this
CAD file that correspond to the family are recorded under the GeometryEntity_t nodes.
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GeometryReference_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GeometryFormat_t GeometryFormat ; (r)

GeometryFile_t GeometryFile ; (r)

List (GeometryEntity_t GeometryEntity1 ... GeometryEntityN) ; (o/d)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

The GeometryFormat is an enumeration type that identifies the CAD system used to generate the
geometry.

GeometryFormat_t := Enumeration(
Null,
NASA-IGES,
SDRC,
Unigraphics,
ProEngineer,
ICEM-CFD,
UserDefined ) ;

Notes

1. Default names for the Descriptor_t, GeometryEntity_t, and UserDefinedData_t lists are
as shown; users may choose other legitimate names. Legitimate names must be unique at this
level and must not include the names GeometryFile or GeometryFormat.

2. By default, there is only one GeometryEntity and its name is the family name.
3. There is no limit to the number of CAD files or CAD systems referenced in a CGNS file.

Different parts of the same model may be described with different CAD files of different CAD
systems.

4. Other CAD geometry formats may be added to this list as needed.

12.8 Family Boundary Condition Structure Definition: FamilyBC_t

One of the main advantages of the concept of a layer of indirection (called a family here) is that the
mesh density and the geometric entities may be modified without altering the association between
nodes and intermediate objects, or between intermediate objects and geometric entities. This
is very beneficial when handling boundary conditions and properties. Instead of setting boundary
conditions directly on mesh entities, or on CAD entities, they may be associated to the intermediate
objects. Since these intermediate objects are stable in the sense that they are not subject to mesh
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or geometric variations, the boundary conditions do not need to be redefined each time the model
is modified. Using the concept of indirection, the boundary conditions and property settings are
made independent of operations such as geometric changes, modification of mesh topology (i.e.,
splitting into zones), mesh refinement and coarsening, etc.

The FamilyBC_t data structure contains the boundary condition type. It is envisioned that it will
be extended to hold both material and volume properties as well.

FamilyBC_t :=
{
BCType_t BCType; (r)

List( FamilyBCDataSet_t BCDataSet1 ... BCDataSetN ) ; (o)
} ;

Notes

1. Default names for the FamilyBCDataSet_t list are as shown; users may choose other legitimate
names. Legitimate names must be unique within a given instance of FamilyBC_t and shall
not include the name BCType.

BCType specifies the boundary-condition type, which gives general information on the boundary-
condition equations to be enforced. Boundary conditions are to be applied at the locations specified
by the BC_t structure(s) associated with the CFD family.

The FamilyBC_t structure provides for a list of boundary-condition data sets. In general, the
proper FamilyBCDataSet_t instance to impose on the CFD family is determined by the BCType
association table (Table 4 on p. 117). The mechanics of determining the proper data set to impose
is described in Section 9.8.

For a few boundary conditions, such as a symmetry plane or polar singularity, the value of BCType
completely describes the equations to impose, and no instances of FamilyBCDataSet_t are needed.
For“simple”boundary conditions, where a single set of Dirichlet and/or Neumann data is applied, a
single FamilyBCDataSet_t will likely appear (although this is not a requirement). For “compound”
boundary conditions, where the equations to impose are dependent on local flow conditions, several
instances of FamilyBCDataSet_t will likely appear; the procedure for choosing the proper data set
is more complex as described in Section 9.8.

12.9 Family Boundary Condition Data Set Structure Definition: FamilyBC-

DataSet_t

FamilyBCDataSet_t contains Dirichlet and Neumann data for a single set of boundary-condition
equations. Its intended use is for simple boundary-condition types, where the equations imposed
do not depend on local flow conditions.

FamilyBCDataSet_t :=
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{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

BCTypeSimple_t BCTypeSimple ; (r)

BCData_t<1> DirichletData ; (o)
BCData_t<1> NeumannData ; (o)

ReferenceState_t ReferenceState ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)
} ;

Notes

1. Default names for the Descriptor_t and UserDefinedData_t lists are as shown; users may
choose other legitimate names. Legitimate names must be unique within a given instance
of FamilyBCDataSet_t and shall not include the names BCTypeSimple, DataClass, Dimen-
sionalUnits, DirichletData, NeumannData or ReferenceState.

2. BCTypeSimple is the only required field. All other fields are optional and the Descriptor_t
list may be empty.

BCTypeSimple specifies the boundary-condition type, which gives general information on the bound-
ary-condition equations to be enforced. BCTypeSimple_t is defined in Section 9.7 along with the
meanings of all the BCTypeSimple values. BCTypeSimple is also used for matching boundary
condition data sets as discussed in Section 9.8.

Boundary-condition data is separated by equation type into Dirichlet and Neumann conditions.
Dirichlet boundary conditions impose the value of the given variables, whereas Neumann boundary
conditions impose the normal derivative of the given variables. The mechanics of specifying Dirichlet
and Neumann data for boundary conditions is covered in Section 9.9.

The substructures DirichletData and NeumannData contain boundary-condition data defined as
globally constant over the family.

Reference quantities applicable to the set of boundary-condition data are contained in the Refer-
enceState structure. DataClass defines the default for the class of data contained in the boundary-
condition data. If the boundary conditions contain dimensional data, DimensionalUnits may be
used to describe the system of dimensional units employed. If present, these three entities take
precedence of all corresponding entities at higher levels of the hierarchy. These precedence rules
are further discussed in Section 6.4.

The UserDefinedData_t data structure allows arbitrary user-defined data to be stored in Descrip-
tor_t and DataArray_t children without the restrictions or implicit meanings imposed on these
node types at other node locations.
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Note that FamilyBCDataSet_t is similar to the data structure BCDataSet_t (Section 9.4). The
primary difference is that FamilyBCDataSet_t only allows for globally constant Dirichlet and Neu-
mann data.

12.10 User-Defined Data Structure Definition: UserDefinedData_t

Since the needs of all CGNS users cannot be anticipated, UserDefinedData_t provides a means
of storing arbitrary user-defined data in Descriptor_t and DataArray_t children without the
restrictions or implicit meanings imposed on these node types at other node locations.

UserDefinedData_t :=
{
List( Descriptor_t Descriptor1 ... DescriptorN ) ; (o)

GridLocation_t GridLocation ; (o/d)

IndexRange_t<IndexDimension> PointRange ; (o)
IndexArray_t<IndexDimension, ListLength, int> PointList ; (o)

List( DataArray_t<> DataArray1 ... DataArrayN ) ; (o)

DataClass_t DataClass ; (o)

DimensionalUnits_t DimensionalUnits ; (o)

FamilyName_t FamilyName ; (o)

List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ; (o)

int Ordinal ; (o)
} ;

Notes

1. Default names for the Descriptor_t, DataArray_t, and UserDefinedData_t lists are as
shown; users may choose other legitimate names. Legitimate names must be unique within
a given instance of UserDefinedData_t and shall not include the names DataClass, Dimen-
sionalUnits, FamilyName, GridLocation, Ordinal, PointList, or PointRange.

2. GridLocation may be set to Vertex, IFaceCenter, JFaceCenter, KFaceCenter, FaceCen-
ter, CellCenter, or EdgeCenter. If GridLocation is absent, then its default value is Vertex.
When GridLocation is set to Vertex, then PointList or PointRange refer to node indices,
for both structured and unstructured grids. When GridLocation is set to FaceCenter, then
PointList or PointRange refer to face elements.

3. GridLocation, PointRange, and PointList may only be used when UserDefinedData_t is
located below a Zone_t structure in the database hierarchy.
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