
1

Thomas Hauser
thomas.hauser@usu.edu

Center for High Performance Computing
Utah State University

Parallel I/O for the CGNS

system

2

Outline

♦ Motivation

♦ Background of parallel I/O

♦ Overview of CGNS
• Data formats

• Parallel I/O strategies

♦ Parallel CGNS implementation

♦ Usage examples
• Read

• Writing�

3

Why parallel I/O

♦ Supercomputer
• A computer which turns a CPU-bound

problem into an I/O-bound problem.

♦ As computers become faster and more
parallel, the (often serialized) I/O bus
can often become the bottleneck for
large computations
• Checkpoint/restart files

• Plot files

• Scratch files for out-of-core computation

4

I/O Needs on Parallel Computers

♦ High Performance
• Take advantage of parallel I/O paths (when available)

• Support for application-level tuning parameters

♦ Data Integrity
• Deal with hardware and power failures sanely

♦ Single System Image
• All nodes "see" the same file systems

• Equal access from anywhere on the machine

♦ Ease of Use
• Accessible in exactly the same ways as a traditional

UNIX-style file system

5

Distributed File Systems

♦ Distributed file system (DFS)
• File system stored locally on one system (the server)

• Accessible by processes on many systems (clients).

♦ Some examples of a DFS
• NFS (Sun)

• AFS (CMU)

♦ Parallel access
• Possible

• Limited by network

• Locking problem

I/
O

 S
e
rv

e
r

Client

Client

Client

Client Client

N
e
tw

o
rk

6

Parallel File Systems

♦ A parallel file system

• multiple servers

• multiple clients

♦ Optimized for high performance

• Very large block sizes (=>64kB)

• Slow metadata operations

• Special APIs for direct access

♦ Examples of parallel file systems

• GPFS (IBM)

• PVFS2 (Clemson/ANL)

I/O
 S

e
rv

e
r

Client
Client

Client

Client

Client

I/O
 S

e
rv

e
r

I/O
 S

e
rv

e
r

I/O
 S

e
rv

e
r

PFS

7

PVFS2 - Parallel Virtual File System

♦ Three-piece

architecture

• Single metadata server

• Multiple data servers

• Multiple clients

♦ Multiple APIs

• PVFS library interface

• UNIX file semantics
using Linux kernel driver

Cluster server

C
o
m

p
u
te

 n
o
d
e
s

n
e
tw

o
rk

• Metadata server

• I/O client

• I/O server

• I/O client

8

Simplistic parallel I/O

I/O in parallel programs without using a
parallel I/O interface

♦ Single I/O Process

♦ Post-Mortem Reassembly

Not scalable for large applications

9

Single Process I/O

♦ Single process I/O.

• Global data broadcasted

• Local data distributed by

message passing

♦ Scalability problems

• I/O bandwidth = single process

bandwidth

• No parallelism in I/O

• Consumes memory and
bandwidth resources

10

Post-Mortem Reassembly

♦ Each process does

I/O into local files

♦ Reassembly

necessary

♦ I/O scales

♦ Reassembly and

splitting tool

• Does not scale

11

Parallel CGNS I/O

♦ New parallel interface

♦ Perform I/O

cooperatively or

collectively

♦ Potential I/O

optimizations for better

performance

♦ CGNS integration

12

Parallel CGNS I/O API

♦ The same CGNS file format
• Using the HDF5 implementation

♦ Maintains the look and feel of the serial midlevel API
• Same syntax and semantics

− Except: open and create

• Distinguished by cgp_ prefix

♦ Parallel access through the parallel HDF5 interface
• Benefits from MPI-I/O

• MPI communicator added in open argument list

• MPI info used for parallel I/O management and further
optimization

13

MPI-IO File System Hints

♦ File system hints
• Describe access pattern and preferences in MPI-2 to the

underlying file system through

• (keyword,value) pairs stored in an MPI_Info object.

♦ File system hints can include the following
• File stripe size

• Number of I/O nodes used

• Planned access patterns

• File system specific hints

♦ Hints not supported by the MPI implementation or
the file system are ignored.

♦ Null info object (MPI_INFO_NULL) as default

14

Parallel I/O implementation

♦ Reading: no modification, except opening file

♦ Writing: Split into 2 phases

♦ Phase 1

• Creation of a data set, e.g. coordinates, solution
data

• Collective operation

♦ Phase 2

• Writing of data into previously created data set

• Independent operation

15

Examples

♦ Reading

• Each process reads it’s own zone

♦ Writing

• Each process writes it’s own zone

• One zone is written by 4 processors

− Creation of zone

− Writing of subset into the zone

16

Example Reading

if (cgp_open(comm, info, fname, MODE_READ, &cgfile))

�cg_error_exit();
if (cg_nbases(cgfile, &nbases)) cg_error_exit();

cgbase = 1;

if (cg_base_read(cgfile, cgbase, basename, &cdim, &pdim))

cg_error_exit();

if (cg_goto(cgfile, cgbase, "end")) cg_error_exit();

if (cg_units_read(&mu, &lu, &tu, &tempu, &au)) cg_error_exit();

if (cg_simulation_type_read(cgfile, cgbase, &simType))

cg_error_exit();

if (cg_nzones(cgfile, cgbase, &nzones)) cg_error_exit();

nstart[0] = 1; nstart[1] = 1; nstart[2] = 1;

nend[0] = SIDES; nend[1] = SIDES; nend[2] = SIDES;

for(nz=1; nz <= nzones; nz++) {

if(cg_zone_read(cgfile, cgbase, nz, zname, zsize)) cg_error_exit

if(mpi_rank == nz-1) {

if (cg_ncoords(cgfile, cgbase, nz, &ngrids)) cg_error_exit();

if (cg_coord_read(cgfile, cgbase, nz, "CoordinateX",

RealDouble, nstart, nend, coord)) cg_error_exit();

}

}�

17

Each Process writes one Zone - 1

if(cgp_open(comm, info, fname, MODE_WRITE, &cgfile) ||

cg_base_write(cgfile, "Base", 3, 3, &cgbase) ||

cg_goto(cgfile, cgbase, "end") ||

cg_simulation_type_write(cgfile, cgbase,

NonTimeAccurate))

cg_error_exit();

for(nz=0; nz < nzones; nz++) {

if(cg_zone_write(cgfile, cgbase, name, size, Structured,

�&cgzone[nz][0])) cg_error_exit();
if (cgp_coord_create(cgfile, cgbase, cgzone[nz][0],

RealDouble, "CoordinateX”, &cgzone[nz][1]))

cg_error_exit();

18

Each Process writes one Zone - 2

for(nz=0; nz < nzones; nz++)

{

if(mpi_rank == nz)

{

if(cgp_coord_write(cgfile, cgbase,

cgzone[mpi_rank][0], cgzone[mpi_rank][1],

coord) ||

cgp_coord_write(cgfile, cgbase,

cgzone[mpi_rank][0], cgzone[mpi_rank][2],

coord) ||

cgp_coord_write(cgfile, cgbase,

cgzone[mpi_rank][0], cgzone[mpi_rank][3],

coord)) cg_error_exit();

}

}�

19

Writing One Zone�
/* size is the total size of the zone */

if(cg_zone_write(cgfile, cgbase, name, size, Structured,

&cgzone[nz][0])) cg_error_exit();

if (cgp_coord_create(cgfile, cgbase, cgzone[nz][0],

RealDouble, "CoordinateX",

&cgzone[nz][1]) ||

cgp_coord_create(cgfile, cgbase, cgzone[nz][0],

RealDouble, "CoordinateY",

&cgzone[nz][2]) ||

cgp_coord_create(cgfile, cgbase, cgzone[nz][0],

RealDouble, "CoordinateZ",

&cgzone[nz][3])) cg_error_exit();

if(cgp_coord_partial_write(cgfile, cgbase, cgzone,

cgcoord, rmin, rmax, coord))

cg_error_exit;

20

Write Performance

♦ 3 Cases

• 50x50x50 points x number of processors

− 23.0MB

• 150x150x150 points x number of processors

− 618 MB

• 250x250x250 points x number of processors

− 2.8GB

♦ Increasing the problem size with the number

of processors

21

Total write time - NFS

22

Total write time – PVFS2

23

Creation Time – PVFS2

24

Write Time – PVFS2

25

Conclusion

♦ Implemented a prototype of parallel I/O within the

framework of CGNS

• Built on top of existing HDF5 interface

• Small addition to the midlevel library cgp_* functions

♦ High-performance I/O possible with few changes

♦ Splitting the I/O into two phases

• Creation of data sets

• Writing of data independently into the previously created

data set

♦ Testing on more platforms

