
Benchmarking the CGNS I/O performance

Thomas Hauser
∗

I. Introduction

Linux clusters can provide a viable and more cost e�ective alternative to conventional supercomputers
for the purposes of computational �uid dynamics (CFD). In some cases, the Linux supercluster is replacing
the conventional supercomputer as a large-scale, shared-use machine. In other cases, smaller clusters are
providing dedicated platforms for CFD computations. One important, often overlooked, issue for large,
three dimensional time-dependent simulations is the input and output performance of the CFD solver. The
development of the CFD General Notation System (CGNS) (see1�3) has brought a standardized and robust
data format to the CFD community, enabling the exchange of information between the various stages of
numerical simulations. This paper presents detailed benchmarks of the serial and parallel I/O performance
of the CGNS software.4 The performance on serial and parallel �le systems will be discussed in this paper.

II. The CGNS system

The speci�c purpose of the CFD General Notation System (CGNS) project is to provide a standard
for recording and recovering computer data associated with the numerical solution of the equations of �uid
dynamics. The intent is to facilitate the exchange of Computational Fluid Dynamics (CFD) data between
sites, between applications codes, and across computing platforms, and to stabilize the archiving of CFD
data.

The CGNS system consists of two parts: (1) the Standard Interface Data Structures, SIDS and (2) the
ADF library. The "Standard Interface Data Structures" speci�cation constitutes the essence of the CGNS
system. While the other elements of the system deal with software implementation issues, the SIDS speci-
�cation concerns itself with de�ning the substance of CGNS. It precisely de�nes the intellectual content of
CFD-related data, including the organizational structure supporting such data and the conventions adopted
to standardize the data exchange process. The SIDS are designed to support all types of information in-
volved in CFD analysis. While the initial target was to establish a standard for 3D structured multi-block
compressible Navier-Stokes analysis, the SIDS extensible framework now includes unstructured analysis,
con�gurations, hybrid topology and geometry-to-mesh association. Although the SIDS speci�cation is inde-
pendent of the physical �le formats, its design was targeted towards implementation using the ADF Core
library, but one is able to de�ne a mapping to any other data storage format. Currently, in CGNS 2.5 adf
and hdf5 can be selected as the underlying data storage format. CGNS version 3.0, which is currently under
testing, extends the underlying data formats to XML.

A. ADF data format

The "Advanced Data Format" (ADF) is a concept de�ning how the data is organized in the storage media.
It is based on a single data structure called an ADF node, designed to store any type of data. Each ADF
�le is composed of at least one node called the "root". The ADF nodes follow a hierarchical arrangement
from the root node down.

B. HDF5 data format

In the current version CGNS can also be con�gured to use HDF5 as the underlying format. The format of
an HDF5 �le on disk encompasses several key ideas of the HDF4 and AIO �le formats as well as addressing

∗Director, Center for High Performance Computing, Utah State University, Associate Fellow Member AIAA

1 of 8

American Institute of Aeronautics and Astronautics

46th AIAA Aerospace Sciences Meeting and Exhibit
7 - 10 January 2008, Reno, Nevada

AIAA 2008-479

Copyright © 2008 by Thomas Hauser. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission.



some shortcomings therein. The new format is more self-describing than the HDF4 format and is more
uniformly applied to data objects in the �le.

An HDF5 �le appears to the user as a directed graph. The nodes of this graph are the higher-level HDF5
objects that are exposed by the HDF5 APIs. At the lowest level, as information is actually written to the
disk, an HDF5 �le is made up of the following objects:

• A super block

• B-tree nodes (containing either symbol nodes or raw data chunks)

• Object headers

• A global heap

• Local heaps

• Free space

The HDF5 library uses these low-level objects to represent the higher-level objects that are then presented
to the user or to applications through the APIs. For instance, a group is an object header that contains a
message that points to a local heap and to a B-tree which points to symbol nodes. A dataset is an object
header that contains messages that describe datatype, space, layout, �lters, external �les, �ll value, etc with
the layout message pointing to either a raw data chunk or to a B-tree that points to raw data chunks.

In addition, the new upcoming 3.0 release of CGNS has the ability to also use XML as the underlying
data format.

C. XML data format

The Extensible Markup Language (XML) [5] and [6] is already used in o�ce applications, e.g. OpenO�ce,
and internet applications. The language has proven to be an e�ective method of transporting data from one
location to another. XML is rapidly becoming the standard for exchanging data because it adds portability
and open accessibility to traditional closed data formats.

XML has started as a subset of the Standard Generalized Markup Language (SGML), which was originally
created as a universally interchangeable data format with rich information storage capabilities. XML has
become the preferred method of data exchange because of its simplicity and extensibility. XML markup tags
are entirely user-de�ned and therefore extensible. This made it fairly simply to implement the XML storage
layer.

D. CGNS parallel I/O

To facilitate convenient and high-performance parallel access to netCDF �les, we have de�ned a new parallel
interface and provide a prototype implementation. Since a large number of existing users are running their
applications over CGNS, our parallel CGNS design retains the original SIDS API and introduces extensions
which are minimal changes from the original API. The parallel API is distinguished from the original serial
API by pre�xing the C function calls with �cgp_� instead of �cg_� as in the standard SIDS API.

Our parallel CGNS API is built on top of parallel HDF5, which enables the implementation to be simple.
In parallel CGNS a �le is opened, operated, and closed by the participating processes in a communication
group. In order for these processes to operate on the same �le space, especially on the structural information
contained in the �le header, a number of changes have been made to the original serial CGNS API.

For the function calls that create/open a CGNS �le, an MPI communicator is added in the argument list
to de�ne the participating I/O processes within the �le's open and close scope. By describing the collection
of processes with a communicator, we provide the underlying implementation with information that can be
used to ensure �le consistency during parallel access. An MPI Info object is also added to pass user access
hints to the implementation for further optimizations. Using hints is not mandatory (MPI_INFO_NULL
can be passed in, indicating no hints). However, hints provide users the ability to deliver the high-level access
information to HDF5 and MPI-IO libraries. Traditional MPI-IO hints tune the MPI-IO implementation to
the speci�c platform and expected low-level access pattern, such as enabling or disabling certain algorithms
or adjusting internal bu�er sizes and policies. These are passed through the HDF5 layer to the MPI-IO

2 of 8

American Institute of Aeronautics and Astronautics



implementation. Hints can be used to describe expected access patterns at the CGNS level of abstraction, in
terms of variables and records. These hints can be interpreted by the CGNS implementation and either used
internally or converted into appropriate MPI-IO hints. Parallel �les may be stored and accessed in great
many ways that depend on the operating system, particular devices used for storage and any middle ware
that may live in between. In order to optimize �le access the programmer may wish to provide additional
information to MPI, in hope that MPI would know what to do with it. Such information is referred to as
hints and there is a special MPI construct called the info object that is supposed to collect all the hints.
Once constructed the info object can be passed to MPI_File_open, MPI_File_delete, MPI_File_set_view
and MPI_File_set_info. It should be understood though that any hints you may wish to give MPI this
way are only advisory and what MPI is going to do with them is implementation dependent.

The same syntax and semantics is maintained for the CGNS attribute functions, and inquiry functions
as the original ones. These functions are also made collective to guarantee consistency of dataset structure
among the participating processes in the same MPI communication group. For instance, all processes must
call the write_zone functions with the same values to get consistent dataset de�nitions.

III. Performance Results

A. Serial Performance

1. Write Performance Increasing Number of Zones

Figure 1 shows the I/O times for di�erent zone sizes and an increasing number of zones.
Figure 2 shows the I/O sizes for di�erent zone sizes and an increasing number of zones.

2. Write performance Constant Number of Zones

Figure 3 show the timing of all implementations for 100 zones.
Figure 4 show the �le sizes of all implementations for 100 zones.

B. Parallel Performance

1. Read Performance

The following scaling results were obtained on the Linux cluster FAUST. It is con�gured with a scratch �le
system spanning all compute nodes consisting of PVFS2. A single block data set has been chosen to perform
the I/O test. Data sizes of 643 (8.2 MB), 1283 (57 MB) and 2563 (417 MB) were used to obtain the wall
clock time and speedups. In Figures 5 and 6 the wall clock time for parallel CGNS I/O is presented. For
one node performance measurements the serial CGNS I/O using the HDF5 layer is used. All data sets show
a improvement in read performance except for 8 processors.

Figure 7 shows the speedup for reading several data sets. Initially the speedup is increasing as expected,
but independent of the data set size a slow down in the neighborhood of 8 processors is observed. Increas-
ing the number of processors beyond 16 gives again speedup for the I/O performance. The improvement
using parallel CGNS and the PVFS on a Linux cluster is satisfactory and shows the potential performance
improvements of using parallel I/O for large scale CFD applications.

2. Write Performance

The write performance is tested on PVFS2 on the Faust cluster. We measured three di�erent times: total
time of the output, time until end of the creation of the data sets, write time into the empty data sets. In
this test case three di�erent grid sizes were used: 50x50x50, 150x150x150 and 250x250x250. The problem
size is also scaled with the number of processors. Each processor contains one zone with the above mentioned
sizes. This means that the �le size increases up to a maximum size on 16 processors of 23.0 MB, 618 MB
and 2.8 GB. Note also that HDF5 is able to write �les large than 2.0 GB on a 32 bit computing platform.

Figure 8 shows the improvement in performance of the parallel �le system compared to the serial I/O.
The total time shows some increase in time with the increase of the problem time. To look more detailed
into the two phases of the output, the creation time and the write time into the empty data set are plotted
in Figures 9 and 10 respectively.

3 of 8

American Institute of Aeronautics and Astronautics



As expected, since the creation of the data sets is done collectively by all processors, the creation time
scales nearly linearly with the number of processors as shown in Figure 9. This is the phase of the writing
which cannot be parallelized. This time is about 20% of the total I/O time.

In Figure 10 the time the parallel program uses to write into the empty, previously created, data sets.
It shows not perfect scaling, which would be constant I/O time over the whole range of processors, but the
increase in time is not very dramatic.

IV. Conclusion

Linux cluster computing appears to be the next-generation of supercomputing, o�ering options from large
shared-use machines to small, dedicated, single application systems. However, optimal use of this systems
for computational �uid dynamics will require tuning the software for the new hardware architectures.

Future work could include the completion of a production quality parallel CGNS API and making it
freely available to the high-performance computing CFD community. Testing on di�erent platforms and
�lesystem is also currently under way.

Acknowledgement

The author would like to thank Bruce Wedan for making the 3.0 implementation available, and his
contribution to CGNS.

References

1Poirier, D., Allmaras, S. R., McCarthy, D. R., Smith, M. F., and Enomoto, F. Y., �The CGNS System,� AIAA Paper

98-3007 , 1998.
2Poirier, D. M. A., Bush, R. H., Cosner, R. R., Rumsey, C. L., and McCarthy, D. R., �Advances in the CGNS Database

Standard for Aerodynamics and CFD,� AIAA Paper 2000-0681 , 2000.
3Legensky, S. M., Edwards, D. E., R. H. Bush, D. M. A. P., Rumsey, C. L., Cosner, R. R., and Towne, C. E., �CFD General

Notation System (CGNS): Status and Future Directions,� AIAA Paper 2002-0752 , 2002.
4Hauser, T., �Parallel I/O for the CFD General Notation System,� Proceedings of the 42nd AIAA Aerospace Sciences

Meeting and Exhibit , Reno, NV, January 05-08 2004.

4 of 8

American Institute of Aeronautics and Astronautics



100 1000 10000 1e+05 1e+06 1e+07 1e+08 1e+09
number of points per zone

0

10

20

30

40

50

60

tim
e 

[s
]

1 zone
10 zones
100 zones
1000 zones
10000 zones

(a) ADF data format

100 10000 1e+06 1e+08
number of points per zone

0

20

40

60

80

100

tim
e 

[s
]

1 zone
10 zones
100 zones
1000 zones
10000 zones

(b) HDF5 data format

Figure 1. I/O times for di�erent number of zones for CGNS 2.5

100 10000 1e+06 1e+08
number of points per zone

0

1e+09

2e+09

3e+09

4e+09

5e+09

fi
le

 s
iz

e 
in

 b
yt

es

1 zone
10 zones
100 zones
1000 zones
10000 zones

(a) ADF data format

100 10000 1e+06 1e+08
number of points per zone

0

1e+09

2e+09

3e+09

4e+09

5e+09

fi
le

 s
iz

e 
in

 b
yt

es

1 zone
10 zones
100 zones
1000 zones
10000 zones

(b) HDF5 data format

Figure 2. I/O sizes for di�erent number of zones for CGNS 2.5

5 of 8

American Institute of Aeronautics and Astronautics



100 1000 10000 1e+05 1e+06 1e+07
number of points per zone

0.01

0.1

1

10

100

1000

tim
e 

[s
]

3.0 - adf data format
3.0 - hdf5 data format
xml data format
compressed xml data format
2.6 - adf data format
2.6 - hdf5 data format

Figure 3. CGNS 3.0 and 2.5 write timings

100 1000 10000 1e+05 1e+06 1e+07
number of points per zone

10000

1e+06

1e+08

1e+10

si
ze

 in
 b

yt
es

3.0 - adf data format
3.0 - hdf5 data format
xml data format
compressed xml data format
2.6 - adf data format
2.6 - hdf5 data format

Figure 4. CGNS 3.0 and 2.5 write timings

6 of 8

American Institute of Aeronautics and Astronautics



Figure 5. Wall time for parallel CGNS I/O using PVFS for the 8.2 and 57 MB data sets

Figure 6. Wall time for parallel CGNS I/O using PVFS for 417 MB data set

Figure 7. Speedup for parallel CGNS I/O using PVFS

7 of 8

American Institute of Aeronautics and Astronautics



Figure 8. Total wall time for writing the data sets on PVFS2

Figure 9. Creation time for creating the data sets on PVFS2

Figure 10. Total wall time for writing into the empty data sets on PVFS2

8 of 8

American Institute of Aeronautics and Astronautics


