
 

CPEX0045: Storing cell-wise polynomial data and generalising       
the description of curved grid elements 

1 Motivation and scope 

The aim is to cater for the large diversity of high order methods by including a specification of the                   
interpolation spaces for solutions in the file, fixing the bare essentials: the coordinate system. The               
choice of Lagrangian interpolation spaces is applicable to the mesh as well as the solution               
description. This generalization will: 
 

● allow to accurately represent data in a range of popular interpolations spaces which could              
otherwise only be approximated; 

● allow to use the native storage of the application for the Lagrangian description, leading              
furthermore to 

○ A simpler, more robust and generic implementation of the drivers; 
○ More efficient I/O by straightforwardly dumping data blocks; 
○ Avoiding the loss of precision for very specific point distributions; 

● avoid the need to redefine the format for each new interpolation type/order/…; 
● cater for space-time methods as well as for ALE computations by including time in the               

functional expressions. 
 

Currently it is assumed that high order intra-element interpolation is ​restricted to unstructured             
mesh computations​, as structured meshes do not offer the possibility to individually list elements              
per order and moreover do not support curved elements. Both modal and nodal interpolations are               
supported. 
 
There is the clear potential for future extension of the proposed format via an explicit specification                
of mathematical expressions of the individual interpolation functions. This will increase the            
flexibility for modal interpolation approaches. 

2 Rationale 

This proposal lifts the limitation of fixing the interpolation functions implicitly by imposing the 
position Lagrange control points as proposed for geometric interpolation/curved elements in 
CPEX0036 and CPEX0038. Instead the description of the functional space and its interpolant is 
integrated as metadata in the CGNS file in order to allow a high flexibility as to the choice of 
interpolants or even coordinates, an automatic procedure to allow for very high interpolation 
order and time-dependent interpolants. 

 

3 Extension of the SIDS 

 
3.1 Conventions  

 

Modifications to the SIDS 

● addition of a new section 3.4 High order interpolation.  

 
In the remainder of this section, we introduce the different paragraphs (with numbering to be 
adapted) that should be added to the new section. 
 



 

“The CGNS standard allows the user to specify their own interpolation approach for both elements 
and solution.  The basic principles are 

1. The element coordinate system per element type is a fixed convention; 
2. For the solution interpolation per each element type and interpolation order, a separate 

interpolation block is added which provides one out of three choices 
○ the set of control points for Lagrange interpolants 
○ the maximum degree of a Pascal polynomial space defined in parametric 

coordinates 
○ the maximum degree of a Pascal polynomial space defined in Cartesian 

(non-parametric) coordinates 
The first two cover parametric interpolation, whereas the last covers modal/Cartesian 
interpolation 

3. The mesh is always defined using interpolations in parametric space, by specifying the set 
of control points. The standard will only allow element types defined up to now in order not 
to modify the element connectivity description. 

4. The interpolation is ​not​ supposed to be the same for the geometry as for the solution, 
unless explicitly specified that way. 

5. In addition to the spatial coordinates, also time can be used as an independent variable. 
 
The following sections describe how interpolations are specified. “ 

 

3.1.1 Interpolation type enum Interpolation_t 

“​InterpolationType_t specifies how the high order interpolants for the solution are defined.            
InterpolationType_t can take four values: 
 

● ParametricLagrange corresponds to a Lagrange interpolation, based upon a set of           
specified control point coordinates in parametric space for a standard interpolation space.  

● ParametricMonomialsPascal corresponds to modal interpolation functions in parametric        
coordinates, based on monomials according to the classical Pascal sets.  

● CartesianMonomialsPascal corresponds to modal interpolation functions in a Cartesian         
coordinate system, centered on the element and parallel to the main axes. The             
interpolation functions are based on monomials according to the classical Pascal sets. 

● IsoParametric ​corresponds to using the same interpolation functions for the solution as for             
the mesh.​” 

 

3.1.2 High order parametric interpolation 

 
“Scope​: The parametric interpolation conventions can be used for specifying both curved elements, 
thereby superseding the standard conventions, as for the solution.” 
 

3.1.2.1 Standard coordinate systems for parametric interpolation  

“The parametric coordinate system is defined per element, and are defined following the figure 1. 
 
 



 

  

  

  

 
 

Figure 1: Parametric coordinate systems 

 
For space-time computations, the coordinate system is extended with one dimension, by the tensor              
product of the spatial coordinate system, with the parameter interval [-1,1] in parametric time 𝜏.               
The latter corresponds to the physical time slab [T​n​,T​n+1​].” 



 

 

3.1.2.2 Parametric interpolation by specification of Lagrange control points 

 
“Scope​: Both solution and element shape can be specified using this formulation. For elements, this               
convention allows to redefine the position and order of the control points with respect to the                
standard definitions for each of the ElementType_t described in section 3.3. The standard definition              
will continue to be used in case no interpolation is explicitly introduced. 
 
Lagrange interpolants require next to the specification of control point locations also the             
specification of the standard function space 𝓥. Its cardinality N defines the number of control               
points that need to be specified.  
 
We denote the Lagrange interpolant corresponding to control point ​u​i ​as 𝜆​i . Furthermore, we               1

need an arbitrary set of base functions for 𝓥, such that 𝓥= span(𝜓​j​, j=0..N-1). The Lagrange                
interpolants are then found as a linear combination of the base functions 
 

𝜆​i ​(​u​)= ∑​j​ ​V​ij​- 1​ 𝜓 ​j​(​u​) 
 
Using the inverse of the Vandermonde matrix V associated to the control points u​i​ and the basis 𝜓 
 

V​ij​ = 𝜓​j​( ​u​i​) 
 
The (spatial) parametric function spaces 𝓥 ​p​(u,v,w) for each element type and order p, which              
support the Lagrange type interpolation are listed in table 1. Next to the standard “complete”               
element, also incomplete, or so-called serendipity elements are supported in higher dimensions. A             
first type of serendipity element only specifies control points on the edges. In three dimensional               
elements of sufficient order, a second serendipity interpolation can be defined which only excludes              
control points which are internal to the element. This classification is not univocal and in particular                
at lower order several elements can be classified in multiple classes. The element type tags are                
described in section 3.3 of the SIDS. 
 
 

Element  Function space 𝓥 ​p​(u,v,w) 

Type Base 
type 

Complete Edge Serendipity Face Serendipity 

Line BAR_2 𝓛 ​p ​(u) 
N=p+1 

n/a n/a 

Quad QUAD_4 𝓠 ​2​p​(u,v) 
N=(p+1)​2 

(𝓛​ p​(u)⨂𝓛 ​1​ (v) ⨁ (𝓛 ​p​ (v) ⨂ 𝓛 ​1​(u)) 
N=4p 

n/a 

Hexa HEXA_8 𝓠 ​3​p​(u,v,w) 
N=(p+1)​3 

  

Triangle TRI_3 𝓟 ​2​p​(u,v) 
N=(p+1)(p+2)/2 

 n/a 

Tetra TETRA_4 𝓟 ​3​p​(u,v,w) 
N=(p+1)(p+2)(p+3)/6 

  

Prism PENTA_6 𝓟 ​2​p​(u,v) ⨂ 𝓛 ​p​(w) 
N=(p+1)​2​(p+2)/2 

  

1 Although for 2D and 3D spaces multi-indices are more convenient, we will use for the simplicity of notation a single 
compounded index i=(i,j,k). Likewise a compound coordinate ​u​=(u,v,w) is used. 



 

Pyramid PYRA_5 See [BCD10] 
 

  

Table 1 :  List of Lagrange functional spaces per element and interpolation type.  
The base type and order - denoted p - are specified for solution interpolation, whereas the full 

element type is used to classify element interpolation. 
 
 
In which we use direct sums  ⨁ and products  ⨂ of the following  standard spaces of order p: 
 

- The linear space :  𝓛 ​p​(u)= span{u ​i​ , 0 <= i <= p} 
 

- Tensor product spaces, N = (p+1)​d 

- 𝓠 ​2​p​(u,v) = 𝓛​p​(u)⨂ 𝓛​p​(v) = span{u​i​ v​j​ , 0<=i+j<= p} 
- 𝓠 ​3​p​(u,v,w) = 𝓛​p​(u) ⨂ 𝓛​p​(v) ⨂ 𝓛 ​p​(w) = span {u​i ​v​j ​w​k​, 0<=i+j+k<= p} 

 
- Pascal triangle/tetrahedron, N = (p+1) … (p+d)/d!  

- 𝓟​2​p​(u,v) = span {u​i​ v​j​, 0<=i+j<= p} 
- 𝓟​3​p​(u,v,w) = span {u​i ​v​j​ w​k​, 0<=i+j+k<= p} 

 

Note that in case the function space is defined in space-time (eg. for ALE meshes), the complete                 

functional space is given by 

 
𝓥 ​p,q​(u,v,w,t) = 𝓥 ​p​(u,v,w)   ⨂ 𝓛​q​(t) 
 
where p and q are the spatial and temporal order respectively.” 

 
 

3.1.2.3 Parametric modal interpolation 

 
“Scope​: this type of interpolation only applies to solutions” 
 
For solutions, also modal interpolation is allowed. The interpolation functions are based on an              
ordered set of monomials spanning the Pascal spaces. According to the underlying dimension,             
these are given by 

● 1D: the monomials 1, u, u​2​, u​3​, …. u​p  
● 2D: The Pascal triangle ordered in the following way  

 
for (int i=0;i<=p;i++)  

for (int j=0;j<=i;j++)  
f[idx++] = u​(i-j)​ v​j 
 

● 3D: the Pascal tetrahedron ordered in the following way 
 
for (int i=0;i<=p;i++)  

for (int j=0;j<=i;j++)  
for (int k=0;k<=i-j;k++)  

f[idx++] = u​(i-j-k)​ v​k​ w​j 
 
The above covers the purely spatial interpolation. In case the function space is defined in               
space-time (eg. for ALE meshes), the complete functional spaces is given by 



 

● 1D in space plus time: the spatial monomials multiplied by monomials in (parametric) time              
𝜏, ordered in the following way 

 
for (int h=0;h<=q;q++) 

for (int i=0;i<=p;i++) 
f[idx++]=𝜏 ​h​u​i 

 

● 2D in space plus time: The spatial Pascal triangle multiplied by monomials in (parametric)              
time 𝜏, ordered in the following way  

 
for (int h=0;h<=q;h++) 

for (int i=0;i<=p;i++)  
for (int j=0;j<=i;j++)  

f[idx++] = 𝜏 ​h​u​(i-j)​ v ​j 
 

● 3D: the spatial Pascal tetrahedron multiplied by monomials in (parametric) time 𝜏, ordered             
in the following way 

 
for (int h=0;h<=q;h++) 

for (int i=0;i<=p;i++)  
for (int j=0;j<=i;j++)  

for (int k=0;k<=i-j;k++)  
f[idx++] = 𝜏 ​h​u​(i-j-k)​ v ​k​ w​j 

 
Note that this space-time formulation reverts to the purely spatial interpolation - including the              
ordering - for the (default) temporal order q=0.“ 
 

3.1.3 Cartesian modal interpolation 

 
“Scope​: Cartesian modal interpolation only applies to solutions.” 
 

3.1.3.1 Computation of the element coordinate system 

 
“We specify a local Cartesian coordinate system per element, based upon the (simplified)             
barycenter. Say we note the global coordinates R = X e​x​+Y e​y​+ Z e​z​, we proceed by first computing                   
the element barycenter R​e as the arithmetic mean of the locations of the principal vertices, ie. the                 
nodes corresponding to those of the associated linear element: 

 

 
 
 

The element local coordinates ​are then defined as r = ​R - R​e​; we then use the notation ​r = x e​x ​+ y e ​y                         

+ z e​z​. 
Correspondingly, an element-local origin of the time dimension is defined as mid-point of the              
relevant physical time slab [T​n​,T​n+1​], such that .”T )/2t = T − ( n + T n+1  
 

3.1.3.2 Cartesian modal interpolants 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbf%20R%5Ee%20%3D%20%5Cfrac%7B1%7D%7BN%7D%20%5Csum_%7Bi%3D1%7D%5EN%20%5Cmathbf%20R_i%5Ee%0


 

“The interpolation space for Cartesian modal interpolations follows the same approach as for             
parametric modal interpolation and is based on ordered sets of monomials spanning the standard              
Pascal spaces. Here. these are monomials in the element-local Cartesian coordinates x,y,z and             
(phyiscal) time t, though (rather than coordinates in parametric space and time). The (ordered) sets               
of monomials for a purely spatial interpolation are thus given by 

● 1D: the monomials 1, x, x​2​, x​3​, …. x​p  
● 2D: The Pascal triangle ordered in the following way  

 
for (int i=0;i<=p;i++)  

for (int j=0;j<=i;j++)  
f[idx++] = x​(i-j)​ y ​j 
 

● 3D: the Pascal tetrahedron ordered in the following way 
 
for (int i=0;i<=p;i++)  

for (int j=0;j<=i;j++)  
for (int k=0;k<=i-j;k++)  

f[idx++] = x​(i-j-k)​ y ​k​ z​j 
 
Again, a space-time interpolation can be obtained by multiplying with temporal monomials, which 
yields the following sets of (ordered) monomials 

● 1D in space plus time: the spatial monomials multiplied by monomials in (parametric) time,              
ordered in the following way 

 
for (int h=0;h<=q;q++) 

for (int i=0;i<=p;i++) 
f[idx++]=t​h​x​i 

 

● 2D in space plus time: The spatial Pascal triangle multiplied by monomials in (parametric)              
time, ordered in the following way  

 
for (int h=0;h<=q;h++) 

for (int i=0;i<=p;i++)  
for (int j=0;j<=i;j++)  

f[idx++] = t​h​x​(i-j)​ y ​j 
 

● 3D: the spatial Pascal tetrahedron multiplied by monomials in (parametric) time, ordered in             
the following way 

 
for (int h=0;h<=q;h++) 

for (int i=0;i<=p;i++)  
for (int j=0;j<=i;j++)  

for (int k=0;k<=i-j;k++)  
f[idx++] = t​h​x​(i-j-k)​ y​k​ z ​j 

“ 
 
3.2 Overriding the element definition and solution interpolation 

 

Modifications to the SIDS:  

● include list of solution/element interpolants in section ​12.6 Family_t  
● new section ​12.10 ElementInterpolation_t  



 

● generalisation of section ​7.3 Elements_t ​ and example in 7.4 
● new section ​12.11 SolutionInterpolation_t  
● generalisation of section ​7.7 FlowSolution_t​ and example in 7.8 
● renumber sections 12.10 UserDefinedData_t and 12.11 Gravity_t 

 
The following sections detail the modifications for each section separately: 
 

3.2.1 modification of section 12.6 

 
“On a case by case basis, ie. per element type and interpolation order, one can provide alternative                 
mesh and solution interpolants in a dedicated family to the zones in question. This in turn is                 
implemented using dedicated list of ​ElementInterpolation_t and ​SolutionInterpolation_t leafs         
within ​Family_t.  
 

Family_t := 
 { 
    List( Descriptor_t Descriptor1 ... DescriptorN ) ;  
    FamilyBC_t FamilyBC ;  
  ... 
     ​List (ElementInterpolation_t Elementinterpolation1  … ElementInterpolationN);  
     List (SolutionInterpolation_t SolutionInterpolation1 ...  SolutionInterpolationN);  
 } ; 

 
 
(o) 
(o) 
 
(o) 
(o) 

 
ElementInterpolation_t and SolutionInterpolation_t are described in sections 12.10 and 12.11          
respectively.” 
 

3.2.2  The description of ElementInterpolation_t, SIDS section 12.10 

 
“The ​ElementInterpolation_t specifies the geometric interpolation of an element, by listing an            
alternative set of Lagrange high order control points in parametric space following the element              
conventions for the coordinate system. In absence of such a block for a given ElementType_t, the                
standard following section 3.3 is followed. ​It is assumed that the first points correspond to the                
principal vertices of the corresponding linear element, in the same order, cf. Figure 1. 
 
The ElementInterpolation_t leaf is defined as follows 
 

ElementInterpolation_t :=  
{ 
    ElementType_t Element;  
    DataArray_t<Float,DataSize[]>  LagrangePoints; 

}​; 

 
 

(r) 
(o) 

 

 
Limitations​: The current proposal maintains ElementType_t to describe both element type and            
geometric order, meaning we can not go beyond 4th order interpolation. This choice is motivated               
by maintaining the ElementConnectivity_t leaf in its current shape and the fact that currently there               
is no real need for higher geometric orders.” 
 

3.2.3 Changes in section 7.3 Elements_t 

 
“​In case an alternative location for the element control points are specified, the actual elements               
are defined as before by listing the indices in the coordinate table, with the notable change that                 



 

the order will correspond to the control point coordinates specified in the corresponding             
ElementInterpolation_t block. If a specific element type is not found amongst these leafs, the              
standard convention is supposed.” 
 

3.2.4 Specification of the solution interpolants  in new section 12.11 SolutionInterpolation_t 

 
“The interpolation functions associated to the interpolation on a given element type and order are               
stored in a ​SolutionInterpolation_t​ leaf, which is again attached to the corresponding Family. 
 

SolutionInterpolation_t :=  
{ 
    ElementType_t Element;  
    Integer SpatialOrder; 
    Integer TemporalOrder; 

    Interpolation_t InterpolationName  
    DataArray_t<Float,DataSize[]>  LagrangePoints;  

}​; 

 
 

(r) 
(r) 

(o/d)
(r) 
(o) 

 
The relevant SolutionInterpolation_t block will be found using the pair composed by the (basic)              
element type and interpolation order. The former corresponds to either the actual element tag or,               
if the corresponding SolutionInterpolation_t block is absent, the type of the corresponding linear             
element. For instance, the interpolation functions for the 2nd order solution on a 4th order               
tetrahedron will be associated to element tag TETRA_35 or TETRA_4. Finally, if InterpolationName             
is not specified, standard interpolation (ie. constant per element) applies.” 
 

3.2.5 Addition to section 7.7 FlowSolution_t 

 
“In case variable high order solutions are stored, a separate zone per interpolation order in space                
(and time) should be stored. The interpolation orders attached to the zone are indicated by the                
integers SpatialOrder resp. TemporalOrder. The location of the solution is then supposed to be              
CellCenter, and in case of a variable order solution, one needs to use PointRange or PointList to                 
single out the elements which will use the specified order. 
 

FlowSolution_t< int CellDimension, int IndexDimension, 
                              int VertexSize[IndexDimension], 
                              int CellSize[IndexDimension] > := 
{ 
    List( Descriptor_t Descriptor1 ... DescriptorN ) ;  
    GridLocation_t GridLocation ;  
   ​ int SpatialOrder; 
    int TemporalOrder;  
    Rind_t<IndexDimension> Rind ;  
    IndexRange<IndexDimension> PointRange ;  
    IndexArray<IndexDimension, ListLength[], int> PointList ;  
    List( DataArray_t<DataType, IndexDimension, DataSize[]>  
          DataArray1 ... DataArrayN ) ;  
    DataClass_t DataClass ;  
    DimensionalUnits_t DimensionalUnits ;  
    List( UserDefinedData_t UserDefinedData1 ... UserDefinedDataN ) ;  
} ; 

 

 
 
 
 

(o) 
(o/d) 
(o/d) 
(o/d) 
(o/d) 
(o) 
(o) 

 
(o) 
(o) 
(o) 
(o) 

 
The default value for SpatialOrder depends on the type of interpolation; the default for              
TemporalOrder is 0.” 



 

 

4 Extensions to the Mid-Level Library 

 
4.1 Helper functions 

 

Functions Modes 

ierr  = cg_element_lagrange_interpolation_size(ElementType_t  t) 
ierr  = cg_solution_lagrange_interpolation_size(ElementType_t t,int os,int ot)  

r - -  
r - - 

 
 

Input/output parameters 

Parameter Comments 

et 
os 
ot 

Element type  
Spatial interpolation order 
Temporal interpolation order 

 
These functions allow to get the cardinality of the Lagrange interpolation space for a given 
element type and potentially the interpolation order for both time and space. 
 
4.2 Reading / encoding the interpolation characteristics the family interface. 

 

Functions Modes 

ierr  = cg_element_interpolation_read(int fn, int bn,int fam,int en,ElementType_t* et,double* pu, 
double* pv,double* pw) 
ierr = cg_nelement_interpolation_read(int fn,int bn,int fam,int* ne) 

r - -  
 

r - - 

ierr = cg_element_interpolation_write(int fn,int bn,int fam,int en,ElementType_t et,double* pu,double* 
pv,double *pw)  

 - w m 

ierr = cg_solution_interpolation_type_read(int fn,int bn,int fam,int sn,ElementType_t* et,int*  os,int* ot, 
InterpolationType_t* it) 
ierr = cg_solution_interpolation_points_read(int fn,int bn, int fam,int sn,double* pu,double* pv,double* 
pw,double* pt) 
ierr = cg_nsolution_interpolation_read(int fn,int bn,int fam,int* ns) 

r - -  
 

r - - 
 

r - -  

ierr = cg_solution_interpolation_type_write(int fn,int bn,int fam,int sn,ElementType_t et,int  os,int ot, 
InterpolationType_t it) 
ierr = cg_solution_interpolation_points_write(int fn,int bn,int fam,int sn,ElementType_t t, double* pu, 
double* pv, double* pw, double* pt) 

 - w m 
 
 - w m 

 
 

Input/output parameters 

Para
meter 

Comments in/out 

fn 
bn 
fam 
ne 
en 

CGNS file index number 
base index number 
family index number 
number of element interpolation blocks 
element interpolation index number 

(in) 
(in) 
(in) 

(in/out) 
(in) 



 

ns 
sn 
os 
ot 
pu 
pv 
pw 
pt 

number of solution interpolation blocks 
solution interpolation index number 
spatial interpolation order 
temporal interpolation order 
control points - u coordinate 
control points - v coordinate (NULL if working on 1D elements) 
control points - w coordinate (NULL if working on 1D or 2D elements) 
control points - t coordinate (NULL if working with purely spatial and no temporal interpolation) 

(in/out) 
(in) 
(in) 
(in) 

(out) 
(out) 
(out) 
(out) 

 
And the accompanying text: 
 
The family contains the set of interpolation bases: 

● for elements as a function of the element type ElementType_t 
● for the solution in function of the combination ElementType_t and two interpolation orders 

os and ot. This means that no more than one specification can be present for the triplet 
(t,os,ot). The element type always refers back to the baseline element, ie. the solution 
interpolation basis for the triplet (TETRA_4,4,0) and (TETRA_10,4,0) are the same 

● the number of coordinates of the control points are defined by the dimension associated to 
the element type dimension 

 
4.3 Accessing data in the FlowSolution_t node 

 

Functions  modes 

cg_sol_interpolation_order_read(int fn, int bn, int zn,int sn,int* spatialOrder,int* temporalOrder) 
cg_sol_interpolation_order_write(int fn,int bn,int zn,int sn,int spatialOrder,int temporalOrder) 

r - -  
- w m 

 
 

Input/output parameters 

Parameter Comments I/O 

fn 
bn 
zn 
sn 
spatialOrder 
temporalOrder 

CGNS file index number 
base index number 
zone index number 
solution block index number 
spatial interpolation order 
temporal interpolation order (-1 if no interpolation) 

(in) 
(in) 
(in) 
(in) 

(in/out) 
(in/out) 

 
 
“The interpolation order is assigned per solution block within an unstructured zone, whereas the 
details concerning the interpolation functions are encoded in the family attached to the zone. In 
this case, the solution is supposed to be attached to CellCenter; the values are in this case the 
expansion weights in the basis. The specific interpolation basis is defined through the combination 
of the element type and the interpolation orders. 
 
The cardinality of the interpolation functions is to be determined first by accessing the description 
of the interpolation.” 

5 Extension to the SIDS file mapping 

 
5.1 ElementInterpolation_t, child node of Family_t 

 



 

Family_t 

 Children 

 ... 

 name = <user defined> 
label = ​ElementInterpolation_t 
datatype = I4 
data = <Element type> 
cardinality = 0:N 

  Children Comments 

  name = LagrangeControlPoints 
type = Descriptor_t 
datatype = R8 
dims = [2] 
data = <point locations> 
cardinality = 1:1 
parameters: Dimension, 
NumberOfPoints 

   
 
 
 
table [Dimension][NumberOfPoints] 
 
dimension corresponds to that of the 
element  

 
 
5.2 SolutionInterpolation_t, child node of Family_t 

 

Family_t 

 Children 

 ... 

 name = <user defined> 
type = ​SolutionInterpolation_t 
datatype = I4 
dim=3 
data = <element type,spatial order, temporal order> 
cardinality = 0:N 

  Children Comments 

  name = InterpolationType 
datatype = ​InterpolationType_t 
data = <choice for interpolation type> 

 
 
ParametricLagrange, 
ParametricMonomialsPascal, 
CartesianMonomialsPascal or 
IsoParametric 

  name = LagrangeControlPoints 
type = Descriptor_t 
datatype = R8 
dims = [2] 
data = <point locations> 
cardinality = 0:1 

   
 
 
 
table [Dimension][NumberOfPoints] 
 



 

parameters: Dimension, 
NumberOfPoints 

dimension corresponds to element and can 
be incremented by 1 for space-time 

 
 
5.3 FlowSolution_t 

A single child node will be added to FlowSolution_t 
 

FlowSolution_t 

 Children 

 .... 

 name = InterpolationOrders 
type = ​IndexArray_t 
datatype = I4 
dimensions = 1 
dimension values = 2 
data = <spatial and temporal interpolation order> 
cardinality = 0:1 
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